Clinical application of whole-exome sequencing analysis in childhood epilepsy.

IF 1.8 4区 医学 Q3 GENETICS & HEREDITY Journal of neurogenetics Pub Date : 2024-12-09 DOI:10.1080/01677063.2024.2434869
Meral Gavaz, Elif S Aslan, Selahattin Tekeş
{"title":"Clinical application of whole-exome sequencing analysis in childhood epilepsy.","authors":"Meral Gavaz, Elif S Aslan, Selahattin Tekeş","doi":"10.1080/01677063.2024.2434869","DOIUrl":null,"url":null,"abstract":"<p><p>The swift updates of public databases and advancements in next-generation sequencing (NGS) technologies have enhanced the genetic identification capacities of epilepsy clinics. This study aimed to evaluate the diagnostic efficacy of NGS in pediatric epilepsy patients as a whole and to present the data obtained in the whole exome sequence analysis. We enrolled 40 children with suspected childhood epilepsy in this study. All patients underwent evaluation by a clinical geneticist or pediatric neurologist and the molecular genetic analysis of those children was performed by whole-exome sequencing (WES). Out of the 40 patients, 12 (30%) received a genetic diagnosis, involving 14 mutations across 13 genes. The cumulative positive diagnostic yield was 30%. Twelve of these patients were identified to have 5 variants previously documented as pathogenic, 9 variants classified as likely pathogenic, and 5 novel variants that have not been reported before. The outcomes indicate that whole-exome sequencing offers great benefits in clinical patient diagnosis, particularly in terms of detecting diagnostic variants. This study underscored the significance of whole exome sequencing (WES) studies, where only a broad gene set is examined in epilepsy patients. This approach has the potential to establish gene-specific phenotypic profiles, particularly by uncovering novel candidate genes in epilepsy patients with well-defined phenotypes. Additionally, conducting validation studies on variants of uncertain clinical significance could enhance the outcome yield.</p>","PeriodicalId":16491,"journal":{"name":"Journal of neurogenetics","volume":" ","pages":"1-7"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurogenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01677063.2024.2434869","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

The swift updates of public databases and advancements in next-generation sequencing (NGS) technologies have enhanced the genetic identification capacities of epilepsy clinics. This study aimed to evaluate the diagnostic efficacy of NGS in pediatric epilepsy patients as a whole and to present the data obtained in the whole exome sequence analysis. We enrolled 40 children with suspected childhood epilepsy in this study. All patients underwent evaluation by a clinical geneticist or pediatric neurologist and the molecular genetic analysis of those children was performed by whole-exome sequencing (WES). Out of the 40 patients, 12 (30%) received a genetic diagnosis, involving 14 mutations across 13 genes. The cumulative positive diagnostic yield was 30%. Twelve of these patients were identified to have 5 variants previously documented as pathogenic, 9 variants classified as likely pathogenic, and 5 novel variants that have not been reported before. The outcomes indicate that whole-exome sequencing offers great benefits in clinical patient diagnosis, particularly in terms of detecting diagnostic variants. This study underscored the significance of whole exome sequencing (WES) studies, where only a broad gene set is examined in epilepsy patients. This approach has the potential to establish gene-specific phenotypic profiles, particularly by uncovering novel candidate genes in epilepsy patients with well-defined phenotypes. Additionally, conducting validation studies on variants of uncertain clinical significance could enhance the outcome yield.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of neurogenetics
Journal of neurogenetics 医学-神经科学
CiteScore
4.40
自引率
0.00%
发文量
13
审稿时长
>12 weeks
期刊介绍: The Journal is appropriate for papers on behavioral, biochemical, or cellular aspects of neural function, plasticity, aging or disease. In addition to analyses in the traditional genetic-model organisms, C. elegans, Drosophila, mouse and the zebrafish, the Journal encourages submission of neurogenetic investigations performed in organisms not easily amenable to experimental genetics. Such investigations might, for instance, describe behavioral differences deriving from genetic variation within a species, or report human disease studies that provide exceptional insights into biological mechanisms
期刊最新文献
Clinical application of whole-exome sequencing analysis in childhood epilepsy. Enthusiasm meets opportunity: in memoriam of William L. Pak, 1932-2023. The roles of blur and eye convergence in distance estimation in larval zebrafish. A familial form of Charcot-Marie-Tooth disease (type 2d) caused by a previously unreported variant in GARS1. The initial years of the Cold Spring Harbor Laboratory summer course on the neurobiology of Drosophila.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1