Model-informed approach to estimate treatment effect in placebo-controlled clinical trials using an artificial intelligence-based propensity weighting methodology to account for non-specific responses to treatment.

IF 2.2 4区 医学 Q3 PHARMACOLOGY & PHARMACY Journal of Pharmacokinetics and Pharmacodynamics Pub Date : 2024-12-10 DOI:10.1007/s10928-024-09950-7
Roberto Gomeni, F Bressolle-Gomeni
{"title":"Model-informed approach to estimate treatment effect in placebo-controlled clinical trials using an artificial intelligence-based propensity weighting methodology to account for non-specific responses to treatment.","authors":"Roberto Gomeni, F Bressolle-Gomeni","doi":"10.1007/s10928-024-09950-7","DOIUrl":null,"url":null,"abstract":"<p><p>In randomized, placebo controlled clinical trials (RCT) in major depressive disorders (MDD), treatment response (TR) is estimated by the change from baseline at study-end (EOS) of the scores of clinical scales used for assessing disease severity. Treatment effect (TE) is estimated by the baseline-adjusted difference at EOS of TR between active treatments and placebo.The TE is function of treatment-specific and, non-specific (NSRT) effect (referred as placebo effect), and placebo response. The conventional statistical approaches used to estimate TE does not account for the potentially confounding effect of NSRT. This pragmatic approach is equivalent to assume that TE is independent of NSRT even if this assumption is not true, leading to potential risks of inflating false negative/positive results in presence of high proportion of subjects with high/low NSRT.The objective of this study was to develop a model informed framework to analyze the outcomes of RCTs using data driven models, non-linear-mixed effect approach, artificial intelligence, and propensity score weighted methodology (PSW) to control the confounding effect of treatment non-specific response on the estimated TE. The secondary objective was to explore the impact of relevant covariates (including the assessment of a dose-response relationship) on the outcomes of pooled data from two RCTs.The proposed PSW approach provides a critical tool for controlling the confounding effect of treatment non-specific response, to increase signal detection and to provide a reliable estimate of the 'true' treatment effect by controlling false negative results associated with excessively high treatment non-specific response.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":"52 1","pages":"5"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631816/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacokinetics and Pharmacodynamics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10928-024-09950-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

In randomized, placebo controlled clinical trials (RCT) in major depressive disorders (MDD), treatment response (TR) is estimated by the change from baseline at study-end (EOS) of the scores of clinical scales used for assessing disease severity. Treatment effect (TE) is estimated by the baseline-adjusted difference at EOS of TR between active treatments and placebo.The TE is function of treatment-specific and, non-specific (NSRT) effect (referred as placebo effect), and placebo response. The conventional statistical approaches used to estimate TE does not account for the potentially confounding effect of NSRT. This pragmatic approach is equivalent to assume that TE is independent of NSRT even if this assumption is not true, leading to potential risks of inflating false negative/positive results in presence of high proportion of subjects with high/low NSRT.The objective of this study was to develop a model informed framework to analyze the outcomes of RCTs using data driven models, non-linear-mixed effect approach, artificial intelligence, and propensity score weighted methodology (PSW) to control the confounding effect of treatment non-specific response on the estimated TE. The secondary objective was to explore the impact of relevant covariates (including the assessment of a dose-response relationship) on the outcomes of pooled data from two RCTs.The proposed PSW approach provides a critical tool for controlling the confounding effect of treatment non-specific response, to increase signal detection and to provide a reliable estimate of the 'true' treatment effect by controlling false negative results associated with excessively high treatment non-specific response.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.90
自引率
4.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Broadly speaking, the Journal of Pharmacokinetics and Pharmacodynamics covers the area of pharmacometrics. The journal is devoted to illustrating the importance of pharmacokinetics, pharmacodynamics, and pharmacometrics in drug development, clinical care, and the understanding of drug action. The journal publishes on a variety of topics related to pharmacometrics, including, but not limited to, clinical, experimental, and theoretical papers examining the kinetics of drug disposition and effects of drug action in humans, animals, in vitro, or in silico; modeling and simulation methodology, including optimal design; precision medicine; systems pharmacology; and mathematical pharmacology (including computational biology, bioengineering, and biophysics related to pharmacology, pharmacokinetics, orpharmacodynamics). Clinical papers that include population pharmacokinetic-pharmacodynamic relationships are welcome. The journal actively invites and promotes up-and-coming areas of pharmacometric research, such as real-world evidence, quality of life analyses, and artificial intelligence. The Journal of Pharmacokinetics and Pharmacodynamics is an official journal of the International Society of Pharmacometrics.
期刊最新文献
Novel endpoints based on tumor size ratio to support early clinical decision-making in oncology drug-development. Translational pharmacokinetic and pharmacodynamic modelling of the anti-ADAMTS-5 NANOBODY® (M6495) using the neo-epitope ARGS as a biomarker. QSP modeling of a transiently inactivating antibody-drug conjugate highlights benefit of short antibody half life. A PopPBPK-RL approach for precision dosing of benazepril in renal impaired patients. Comparison of the power and type 1 error of total score models for drug effect detection in clinical trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1