Development and validation of an all-in-one rabies virus Bat-Clade genomic sequencing and host identification protocol.

IF 2.2 4区 医学 Q3 BIOCHEMICAL RESEARCH METHODS Journal of virological methods Pub Date : 2024-12-07 DOI:10.1016/j.jviromet.2024.115097
Fernanda Marques de Souza Godinho, Aline Campos, Rosana Huff, Amanda Pellenz Ruivo, Thales Bermann, Milena Bauerman, Franciellen Machado Dos Santos, Taina Machado Selayaran, Artur Beineke Correa, Raissa Nunes Dos Santos, Paulo Michel Roehe, Gabriel da Luz Wallau, Richard Steiner Salvato
{"title":"Development and validation of an all-in-one rabies virus Bat-Clade genomic sequencing and host identification protocol.","authors":"Fernanda Marques de Souza Godinho, Aline Campos, Rosana Huff, Amanda Pellenz Ruivo, Thales Bermann, Milena Bauerman, Franciellen Machado Dos Santos, Taina Machado Selayaran, Artur Beineke Correa, Raissa Nunes Dos Santos, Paulo Michel Roehe, Gabriel da Luz Wallau, Richard Steiner Salvato","doi":"10.1016/j.jviromet.2024.115097","DOIUrl":null,"url":null,"abstract":"<p><p>Rabies virus (RABV), remains a significant public health concern, with bat-maintained lineages accounting for all currently documented cases in Brazil. Despite the availability of pharmacological prophylaxis for humans and animals, the high genetic diversity of RABV in diverse natural bat hosts and continued circulation in multiple animals pose challenges for effective surveillance. Here, we developed and validated a novel, rapidly deployable amplicon-based sequencing approach for RABV genomic surveillance. This \"all-in-one\" protocol integrates whole RABV genome sequencing with host species identification through COI gene amplification and sequencing, addressing the challenges posed by RABV's high genetic diversity and complex transmission dynamics. We assessed the protocol's effectiveness by sequencing 25 near-complete RABV genomes from host species across four distinct families (Bovidae, Equidae, Felidae, and Microchiroptera) obtained from the Rabies Control and Surveillance Program from the Rio Grande do Sul State, Southern Brazil. The method achieved an average genome coverage of 91.4 % at a minimum 5x read depth, with a mean depth coverage of 816x across sequenced genomes. The results demonstrated significant Bat-Clade sublineage diversity, which was classified using the MADDOG RABV lineage system. The protocol successfully identified three bat species (Tadarida brasiliensis, Desmodus rotundus, and Myotis nigricans) among the samples, highlighting its capability for precise host identification. This study presents a powerful tool for high-resolution evaluation of RABV genomic features and host identification, enabling more targeted animal and human health interventions. This new approach has the potential to enhance RABV surveillance capabilities, contributing to more effective rabies control strategies within a One Health framework.</p>","PeriodicalId":17663,"journal":{"name":"Journal of virological methods","volume":" ","pages":"115097"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of virological methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jviromet.2024.115097","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Rabies virus (RABV), remains a significant public health concern, with bat-maintained lineages accounting for all currently documented cases in Brazil. Despite the availability of pharmacological prophylaxis for humans and animals, the high genetic diversity of RABV in diverse natural bat hosts and continued circulation in multiple animals pose challenges for effective surveillance. Here, we developed and validated a novel, rapidly deployable amplicon-based sequencing approach for RABV genomic surveillance. This "all-in-one" protocol integrates whole RABV genome sequencing with host species identification through COI gene amplification and sequencing, addressing the challenges posed by RABV's high genetic diversity and complex transmission dynamics. We assessed the protocol's effectiveness by sequencing 25 near-complete RABV genomes from host species across four distinct families (Bovidae, Equidae, Felidae, and Microchiroptera) obtained from the Rabies Control and Surveillance Program from the Rio Grande do Sul State, Southern Brazil. The method achieved an average genome coverage of 91.4 % at a minimum 5x read depth, with a mean depth coverage of 816x across sequenced genomes. The results demonstrated significant Bat-Clade sublineage diversity, which was classified using the MADDOG RABV lineage system. The protocol successfully identified three bat species (Tadarida brasiliensis, Desmodus rotundus, and Myotis nigricans) among the samples, highlighting its capability for precise host identification. This study presents a powerful tool for high-resolution evaluation of RABV genomic features and host identification, enabling more targeted animal and human health interventions. This new approach has the potential to enhance RABV surveillance capabilities, contributing to more effective rabies control strategies within a One Health framework.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
0.00%
发文量
209
审稿时长
41 days
期刊介绍: The Journal of Virological Methods focuses on original, high quality research papers that describe novel and comprehensively tested methods which enhance human, animal, plant, bacterial or environmental virology and prions research and discovery. The methods may include, but not limited to, the study of: Viral components and morphology- Virus isolation, propagation and development of viral vectors- Viral pathogenesis, oncogenesis, vaccines and antivirals- Virus replication, host-pathogen interactions and responses- Virus transmission, prevention, control and treatment- Viral metagenomics and virome- Virus ecology, adaption and evolution- Applied virology such as nanotechnology- Viral diagnosis with novelty and comprehensive evaluation. We seek articles, systematic reviews, meta-analyses and laboratory protocols that include comprehensive technical details with statistical confirmations that provide validations against current best practice, international standards or quality assurance programs and which advance knowledge in virology leading to improved medical, veterinary or agricultural practices and management.
期刊最新文献
Performance evaluation of TaqMan™ Arbovirus Triplex Kit (ZIKV/DENV/CHIKV) for detection and differentiation of dengue and chikungunya viral RNA in serum samples of symptomatic patients. Climatic determinants of monkeypox transmission: A multi-national analysis using generalized count mixed models. Corrigendum to "Rapid detection of bat coronaviruses from fecal samples using loop-mediated isothermal amplification assay in the field" J. Virol. Methods 330 (December) (2024) 115035. Corrigendum to "Generation of infectious clone of bovine adenovirus type I expressing a visible marker gene" [J. Virol. Methods 261 (2018) 139-146]. Effect of Time and Temperature on the Stability of HPV and Cellular Nucleic Acid using Simulated Dry Self-Samples.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1