Lipid-based nanoparticles for drug delivery in Parkinson's disease.

IF 1.8 4区 医学 Q4 NEUROSCIENCES Translational Neuroscience Pub Date : 2024-12-03 eCollection Date: 2024-01-01 DOI:10.1515/tnsci-2022-0359
Han Cai, Dong Liu, Wei-Wei Xue, Liya Ma, Hai-Tao Xie, Ke Ning
{"title":"Lipid-based nanoparticles for drug delivery in Parkinson's disease.","authors":"Han Cai, Dong Liu, Wei-Wei Xue, Liya Ma, Hai-Tao Xie, Ke Ning","doi":"10.1515/tnsci-2022-0359","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is a neurodegenerative disorder that predominantly affects dopaminergic neurons in the substantia nigra and ventral tegmental area, resulting in symptoms such as tremors, muscle rigidity, bradykinesia, and potential cognitive and affective disturbances. The effective delivery of pharmacological agents to the central nervous system is hindered by various factors, including the restrictive properties of the blood‒brain barrier and blood‒spinal cord barrier, as well as the physicochemical characteristics of the drugs. Traditional drug delivery methods may not provide the therapeutic concentrations necessary for functional restoration in PD patients. However, lipid-based nanoparticles (NPs) offer new possibilities for enhancing the bioavailability of established treatment regimens and developing innovative therapies that can modify the course of the disease. This review provides a concise overview of recent advances in lipid-based NP strategies aimed at mitigating specific pathological mechanisms relevant to PD progression. This study also explores the potential applications of nanotechnological innovations in the development of advanced treatment modalities for individuals with PD.</p>","PeriodicalId":23227,"journal":{"name":"Translational Neuroscience","volume":"15 1","pages":"20220359"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11627081/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/tnsci-2022-0359","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Parkinson's disease (PD) is a neurodegenerative disorder that predominantly affects dopaminergic neurons in the substantia nigra and ventral tegmental area, resulting in symptoms such as tremors, muscle rigidity, bradykinesia, and potential cognitive and affective disturbances. The effective delivery of pharmacological agents to the central nervous system is hindered by various factors, including the restrictive properties of the blood‒brain barrier and blood‒spinal cord barrier, as well as the physicochemical characteristics of the drugs. Traditional drug delivery methods may not provide the therapeutic concentrations necessary for functional restoration in PD patients. However, lipid-based nanoparticles (NPs) offer new possibilities for enhancing the bioavailability of established treatment regimens and developing innovative therapies that can modify the course of the disease. This review provides a concise overview of recent advances in lipid-based NP strategies aimed at mitigating specific pathological mechanisms relevant to PD progression. This study also explores the potential applications of nanotechnological innovations in the development of advanced treatment modalities for individuals with PD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.00
自引率
4.80%
发文量
45
审稿时长
>12 weeks
期刊介绍: Translational Neuroscience provides a closer interaction between basic and clinical neuroscientists to expand understanding of brain structure, function and disease, and translate this knowledge into clinical applications and novel therapies of nervous system disorders.
期刊最新文献
A pilot evaluation of the diagnostic accuracy of ChatGPT-3.5 for multiple sclerosis from case reports. Corrigendum to "Tongxinluo promotes axonal plasticity and functional recovery after stroke". Disgust sensitivity and psychopathic behavior: A narrative review. The hidden link: Investigating functional connectivity of rarely explored sub-regions of thalamus and superior temporal gyrus in Schizophrenia. Internal consistency of the Mental Health Professional Culture Inventory: A pilot study in Romanian population.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1