Potential protection by vitamin D against DNA fragmentation and bone marrow cytotoxicity induced by chloramphenicol.

Q1 Environmental Science Toxicology Reports Pub Date : 2024-11-22 eCollection Date: 2024-12-01 DOI:10.1016/j.toxrep.2024.101828
Nagla Zaky Ibrahim El-Alfy, Asmaa Ahmed Khaled Emam, Mahmoud Fathy Mahmoud, Omnia Nabeel Mohamed Morgan, Sally Ramadan Gabr Eid El-Ashry
{"title":"Potential protection by vitamin D against DNA fragmentation and bone marrow cytotoxicity induced by chloramphenicol.","authors":"Nagla Zaky Ibrahim El-Alfy, Asmaa Ahmed Khaled Emam, Mahmoud Fathy Mahmoud, Omnia Nabeel Mohamed Morgan, Sally Ramadan Gabr Eid El-Ashry","doi":"10.1016/j.toxrep.2024.101828","DOIUrl":null,"url":null,"abstract":"<p><p>Vitamin D (Vit D) has gained significant attention in health research recently as a result of its potential protective effects against various cellular damages. This study aimed to investigate the ability of vitamin D to mitigate deoxyribonucleic acid (DNA) fragmentation in liver cells and bone marrow cytotoxicity induced by chloramphenicol (CAP). Sixty male albino mice were divided into six groups: control, chloramphenicol-treated (250 and 500 mg/kg body weight, 5 days per week for 4 weeks), vitamin D-treated (800 IU/kg body weight, 5 days per week for 4 weeks) and vitamin D plus chloramphenicol-treated groups. Results of DNA fragmentation test revealed that oral treatment with low and high doses of CAP significantly increased the frequency of DNA fragmentation in liver cells in comparison with the control, whereas oral treatment with vitamin D alone or plus low and high doses of chloramphenicol significantly reduced the genotoxicity in liver cells in comparison with the control group. Micronucleus analysis showed that CAP treatment at low and high doses significantly increased micronuclei formation and cytotoxicity in bone marrow cells. However, vitamin D significantly reduced the micronuclei formation in bone marrow cells of mice treated with chloramphenicol. Vitamin D alone showed no significant difference in the frequency of micronuclei and bone marrow cytotoxicity compared to the control group. Accordingly, further research exploring the mechanisms underlying the protective effects of vitamin D and investigating optimal dosing regimens is warranted. Also, clinical studies evaluating the efficacy of vitamin D supplementation to mitigate the adverse effects of chloramphenicol in human patients are recommended.</p>","PeriodicalId":23129,"journal":{"name":"Toxicology Reports","volume":"13 ","pages":"101828"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11626822/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.toxrep.2024.101828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Vitamin D (Vit D) has gained significant attention in health research recently as a result of its potential protective effects against various cellular damages. This study aimed to investigate the ability of vitamin D to mitigate deoxyribonucleic acid (DNA) fragmentation in liver cells and bone marrow cytotoxicity induced by chloramphenicol (CAP). Sixty male albino mice were divided into six groups: control, chloramphenicol-treated (250 and 500 mg/kg body weight, 5 days per week for 4 weeks), vitamin D-treated (800 IU/kg body weight, 5 days per week for 4 weeks) and vitamin D plus chloramphenicol-treated groups. Results of DNA fragmentation test revealed that oral treatment with low and high doses of CAP significantly increased the frequency of DNA fragmentation in liver cells in comparison with the control, whereas oral treatment with vitamin D alone or plus low and high doses of chloramphenicol significantly reduced the genotoxicity in liver cells in comparison with the control group. Micronucleus analysis showed that CAP treatment at low and high doses significantly increased micronuclei formation and cytotoxicity in bone marrow cells. However, vitamin D significantly reduced the micronuclei formation in bone marrow cells of mice treated with chloramphenicol. Vitamin D alone showed no significant difference in the frequency of micronuclei and bone marrow cytotoxicity compared to the control group. Accordingly, further research exploring the mechanisms underlying the protective effects of vitamin D and investigating optimal dosing regimens is warranted. Also, clinical studies evaluating the efficacy of vitamin D supplementation to mitigate the adverse effects of chloramphenicol in human patients are recommended.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Toxicology Reports
Toxicology Reports Environmental Science-Health, Toxicology and Mutagenesis
CiteScore
7.60
自引率
0.00%
发文量
228
审稿时长
11 weeks
期刊最新文献
High-throughput non-homogenous 3D polycaprolactone scaffold for cancer cell and cancer-associated fibroblast mini-tumors to evaluate drug treatment response. Screening of bioactive components in Ferula assafo dried oleo-gum resin and assessment of its protective function against cadmium-induced oxidative damage, genotoxicity, and cytotoxicity in rats. Effects of dietary acrylamide on kidney and liver health: Molecular mechanisms and pharmacological implications. Fenofibrate ameliorated atorvastatin and piperine-induced ROS mediated reproductive toxicity in male Wistar rats. Interleukin-10 levels in azithromycin-induced cardiac damage and the protective role of combined selenium and vitamin E treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1