Out of (the) bag-encoding categorical predictors impacts out-of-bag samples.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE PeerJ Computer Science Pub Date : 2024-11-18 eCollection Date: 2024-01-01 DOI:10.7717/peerj-cs.2445
Helen L Smith, Patrick J Biggs, Nigel P French, Adam N H Smith, Jonathan C Marshall
{"title":"Out of (the) bag-encoding categorical predictors impacts out-of-bag samples.","authors":"Helen L Smith, Patrick J Biggs, Nigel P French, Adam N H Smith, Jonathan C Marshall","doi":"10.7717/peerj-cs.2445","DOIUrl":null,"url":null,"abstract":"<p><p>Performance of random forest classification models is often assessed and interpreted using out-of-bag (OOB) samples. Observations which are OOB when a tree is trained may serve as a test set for that tree and predictions from the OOB observations used to calculate OOB error and variable importance measures (VIM). OOB errors are popular because they are fast to compute and, for large samples, are a good estimate of the true prediction error. In this study, we investigate how target-based <i>vs</i>. target-agnostic encoding of categorical predictor variables for random forest can bias performance measures based on OOB samples. We show that, when categorical variables are encoded using a target-based encoding method, and when the encoding takes place prior to bagging, the OOB sample can underestimate the true misclassification rate, and overestimate variable importance. We recommend using a separate test data set when evaluating variable importance and/or predictive performance of tree based methods that utilise a target-based encoding method.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"10 ","pages":"e2445"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623134/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2445","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Performance of random forest classification models is often assessed and interpreted using out-of-bag (OOB) samples. Observations which are OOB when a tree is trained may serve as a test set for that tree and predictions from the OOB observations used to calculate OOB error and variable importance measures (VIM). OOB errors are popular because they are fast to compute and, for large samples, are a good estimate of the true prediction error. In this study, we investigate how target-based vs. target-agnostic encoding of categorical predictor variables for random forest can bias performance measures based on OOB samples. We show that, when categorical variables are encoded using a target-based encoding method, and when the encoding takes place prior to bagging, the OOB sample can underestimate the true misclassification rate, and overestimate variable importance. We recommend using a separate test data set when evaluating variable importance and/or predictive performance of tree based methods that utilise a target-based encoding method.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
袋外编码分类预测因子影响袋外样本。
随机森林分类模型的性能通常使用袋外样本(OOB)来评估和解释。当树被训练时的OOB观测值可以作为该树的测试集和用于计算OOB误差和可变重要性度量(VIM)的OOB观测值的预测。OOB误差很受欢迎,因为它们可以快速计算,并且对于大样本来说,是对真实预测误差的良好估计。在这项研究中,我们研究了随机森林分类预测变量基于目标的编码与目标不可知的编码如何对基于OOB样本的性能测量产生偏差。我们表明,当使用基于目标的编码方法对分类变量进行编码时,当编码发生在装袋之前时,OOB样本可能低估了真实的误分类率,并高估了变量的重要性。我们建议在评估使用基于目标的编码方法的基于树的方法的变量重要性和/或预测性能时使用单独的测试数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
期刊最新文献
Design of a 3D emotion mapping model for visual feature analysis using improved Gaussian mixture models. Enhancing task execution: a dual-layer approach with multi-queue adaptive priority scheduling. LOGIC: LLM-originated guidance for internal cognitive improvement of small language models in stance detection. Generative AI and future education: a review, theoretical validation, and authors' perspective on challenges and solutions. MSR-UNet: enhancing multi-scale and long-range dependencies in medical image segmentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1