Comprehensive empirical evaluation of feature extractors in computer vision.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE PeerJ Computer Science Pub Date : 2024-11-04 eCollection Date: 2024-01-01 DOI:10.7717/peerj-cs.2415
Murat Isik
{"title":"Comprehensive empirical evaluation of feature extractors in computer vision.","authors":"Murat Isik","doi":"10.7717/peerj-cs.2415","DOIUrl":null,"url":null,"abstract":"<p><p>Feature detection and matching are fundamental components in computer vision, underpinning a broad spectrum of applications. This study offers a comprehensive evaluation of traditional feature detections and descriptors, analyzing methods such as Scale Invariant Feature Transform (SIFT), Speeded-Up Robust Features (SURF), Binary Robust Independent Elementary Features (BRIEF), Oriented FAST and Rotated BRIEF (ORB), Binary Robust Invariant Scalable Keypoints (BRISK), KAZE, Accelerated KAZE (AKAZE), Fast Retina Keypoint (FREAK), Dense and Accurate Invariant Scalable descriptor for Yale (DAISY), Features from Accelerated Segment Test (FAST), and STAR. Each feature extractor was assessed based on its architectural design and complexity, focusing on how these factors influence computational efficiency and robustness under various transformations. Utilizing the Image Matching Challenge Photo Tourism 2020 dataset, which includes over 1.5 million images, the study identifies the FAST algorithm as the most efficient detector when paired with the ORB descriptor and Brute-Force (BF) matcher, offering the fastest feature extraction and matching process. ORB is notably effective on affine-transformed and brightened images, while AKAZE excels in conditions involving blurring, fisheye distortion, image rotation, and perspective distortions. Through more than 2 million comparisons, the study highlights the feature extractors that demonstrate superior resilience across various conditions, including rotation, scaling, blurring, brightening, affine transformations, perspective distortions, fisheye distortion, and salt-and-pepper noise.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"10 ","pages":"e2415"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623105/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2415","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Feature detection and matching are fundamental components in computer vision, underpinning a broad spectrum of applications. This study offers a comprehensive evaluation of traditional feature detections and descriptors, analyzing methods such as Scale Invariant Feature Transform (SIFT), Speeded-Up Robust Features (SURF), Binary Robust Independent Elementary Features (BRIEF), Oriented FAST and Rotated BRIEF (ORB), Binary Robust Invariant Scalable Keypoints (BRISK), KAZE, Accelerated KAZE (AKAZE), Fast Retina Keypoint (FREAK), Dense and Accurate Invariant Scalable descriptor for Yale (DAISY), Features from Accelerated Segment Test (FAST), and STAR. Each feature extractor was assessed based on its architectural design and complexity, focusing on how these factors influence computational efficiency and robustness under various transformations. Utilizing the Image Matching Challenge Photo Tourism 2020 dataset, which includes over 1.5 million images, the study identifies the FAST algorithm as the most efficient detector when paired with the ORB descriptor and Brute-Force (BF) matcher, offering the fastest feature extraction and matching process. ORB is notably effective on affine-transformed and brightened images, while AKAZE excels in conditions involving blurring, fisheye distortion, image rotation, and perspective distortions. Through more than 2 million comparisons, the study highlights the feature extractors that demonstrate superior resilience across various conditions, including rotation, scaling, blurring, brightening, affine transformations, perspective distortions, fisheye distortion, and salt-and-pepper noise.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
计算机视觉中特征提取器的综合经验评价。
特征检测和匹配是计算机视觉的基本组成部分,支撑着广泛的应用。本研究对传统的特征检测和描述符进行了综合评价,分析了尺度不变特征变换(SIFT)、加速鲁棒特征(SURF)、二值鲁棒独立基本特征(BRIEF)、定向快速和旋转简短特征(ORB)、二值鲁棒不变可扩展关键点(BRISK)、KAZE、加速KAZE (AKAZE)、快速视网膜关键点(FREAK)、耶鲁密集精确不变可扩展描述符(DAISY)等方法。加速段测试(FAST)和STAR的特征。每个特征提取器根据其架构设计和复杂性进行评估,重点关注这些因素如何影响各种转换下的计算效率和鲁棒性。利用图像匹配挑战照片旅游2020数据集,其中包括超过150万张图像,该研究将FAST算法与ORB描述符和蛮力(BF)匹配器配对时确定为最有效的检测器,提供最快的特征提取和匹配过程。ORB在仿射变换和增亮图像上非常有效,而AKAZE在模糊、鱼眼扭曲、图像旋转和透视扭曲等条件下表现出色。通过200多万次比较,该研究突出了在各种条件下表现出卓越弹性的特征提取器,包括旋转、缩放、模糊、增亮、仿射变换、透视扭曲、鱼眼扭曲和椒盐噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
期刊最新文献
Design of a 3D emotion mapping model for visual feature analysis using improved Gaussian mixture models. Enhancing task execution: a dual-layer approach with multi-queue adaptive priority scheduling. LOGIC: LLM-originated guidance for internal cognitive improvement of small language models in stance detection. Generative AI and future education: a review, theoretical validation, and authors' perspective on challenges and solutions. MSR-UNet: enhancing multi-scale and long-range dependencies in medical image segmentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1