An endogenous aryl hydrocarbon receptor ligand induces preeclampsia-like phenotypes in rats.

IF 4.7 2区 医学 Q1 NEUROSCIENCES Journal of Physiology-London Pub Date : 2025-01-01 Epub Date: 2024-12-09 DOI:10.1113/JP287503
Ying-Jie Zhao, Chi Zhou, Si-Yan Zhang, Jay S Mishra, Hui-Hui Li, Wei Lei, Kai Wang, Sathish Kumar, Jing Zheng
{"title":"An endogenous aryl hydrocarbon receptor ligand induces preeclampsia-like phenotypes in rats.","authors":"Ying-Jie Zhao, Chi Zhou, Si-Yan Zhang, Jay S Mishra, Hui-Hui Li, Wei Lei, Kai Wang, Sathish Kumar, Jing Zheng","doi":"10.1113/JP287503","DOIUrl":null,"url":null,"abstract":"<p><p>Preeclampsia (PE) is a hypertensive disorder during human pregnancy. Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor. Exogenous and endogenous AhR ligands can induce hypertension in male rats and mice. Herein, using rats as a model, we tested the hypothesis that over-regulation of endogenous AhR ligands during pregnancy impairs vascular functions by disrupting the transcriptome in the placenta, contributing to the development of PE. Pregnant rats were injected daily with an endogenous AhR ligand, 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), from gestational day (GD) 10 to 19. Maternal mean blood pressure was measured on GD16-20. Proteinuria and uteroplacental blood flow were monitored on GD20. Placentas collected on GD20 were used to determine changes in vascular density and transcriptome. Compared with the vehicle control, ITE elevated maternal mean blood pressure by 22% and 16% on GD16 and 17, respectively. ITE increased proteinuria by 50% and decreased uteroplacental blood flow by 26%. ITE reduced the placental vascular density by 18%. RNA sequencing analysis revealed that ITE induced 1316 and 2020 differentially expressed genes (DEGs) in female and male placentas, respectively. These DEGs were enriched in pathways relevant to heart diseases, vascular functions and inflammation. Bioinformatics analysis also predicted that ITE altered immune cell infiltration in placentas depending on fetal sex. These data suggest that over-regulation of endogenous AhR ligands may lead to PE with impaired vascular functions and disrupted fetal sex-specific transcriptomes and immune cell infiltration in placentas. These AhR ligand-induced DEGs and pathways may represent promising therapeutic targets for PE-induced cardiovascular dysfunctions. KEY POINTS: An endogenous AhR ligand (ITE) elevated maternal blood pressure and proteinuria in pregnant rats, and decreased uteroplacental blood flow and fetal and placental growth, all of which are hallmarks of preeclampsia. ITE reduced vascular density and altered immune cell distribution in rat placentas. ITE dysregulated transcriptomes in rat placentas in a fetal sex-specific manner. These ITE-dysregulated genes and pathways are highly relevant to diseases of heart, vascular functions and inflammatory responses.</p>","PeriodicalId":50088,"journal":{"name":"Journal of Physiology-London","volume":" ","pages":"579-594"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737537/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiology-London","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/JP287503","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Preeclampsia (PE) is a hypertensive disorder during human pregnancy. Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor. Exogenous and endogenous AhR ligands can induce hypertension in male rats and mice. Herein, using rats as a model, we tested the hypothesis that over-regulation of endogenous AhR ligands during pregnancy impairs vascular functions by disrupting the transcriptome in the placenta, contributing to the development of PE. Pregnant rats were injected daily with an endogenous AhR ligand, 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), from gestational day (GD) 10 to 19. Maternal mean blood pressure was measured on GD16-20. Proteinuria and uteroplacental blood flow were monitored on GD20. Placentas collected on GD20 were used to determine changes in vascular density and transcriptome. Compared with the vehicle control, ITE elevated maternal mean blood pressure by 22% and 16% on GD16 and 17, respectively. ITE increased proteinuria by 50% and decreased uteroplacental blood flow by 26%. ITE reduced the placental vascular density by 18%. RNA sequencing analysis revealed that ITE induced 1316 and 2020 differentially expressed genes (DEGs) in female and male placentas, respectively. These DEGs were enriched in pathways relevant to heart diseases, vascular functions and inflammation. Bioinformatics analysis also predicted that ITE altered immune cell infiltration in placentas depending on fetal sex. These data suggest that over-regulation of endogenous AhR ligands may lead to PE with impaired vascular functions and disrupted fetal sex-specific transcriptomes and immune cell infiltration in placentas. These AhR ligand-induced DEGs and pathways may represent promising therapeutic targets for PE-induced cardiovascular dysfunctions. KEY POINTS: An endogenous AhR ligand (ITE) elevated maternal blood pressure and proteinuria in pregnant rats, and decreased uteroplacental blood flow and fetal and placental growth, all of which are hallmarks of preeclampsia. ITE reduced vascular density and altered immune cell distribution in rat placentas. ITE dysregulated transcriptomes in rat placentas in a fetal sex-specific manner. These ITE-dysregulated genes and pathways are highly relevant to diseases of heart, vascular functions and inflammatory responses.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
内源性芳烃受体配体诱导大鼠子痫前期样表型。
子痫前期(PE)是一种妊娠期高血压疾病。芳烃受体(AhR)是一种配体激活的转录因子。外源性和内源性AhR配体可诱导雄性大鼠和小鼠高血压。在此,我们以大鼠为模型,验证了怀孕期间内源性AhR配体的过度调节通过破坏胎盘中的转录组来损害血管功能,从而促进PE的发展的假设。妊娠大鼠从妊娠第10 ~ 19天每天注射内源性AhR配体2-(1′h -吲哚-3′-羰基)-噻唑-4-羧酸甲酯(ITE)。测定产妇平均血压GD16-20。GD20监测蛋白尿和子宫胎盘血流。利用GD20收集的胎盘来测定血管密度和转录组的变化。与对照组相比,妊娠期第16和17天,ITE使产妇平均血压分别升高22%和16%。ITE使蛋白尿增加50%,使子宫胎盘血流量减少26%。ITE使胎盘血管密度降低18%。RNA测序分析显示,ITE在女性和男性胎盘中分别诱导了1316个和2020个差异表达基因(DEGs)。这些deg在与心脏病、血管功能和炎症相关的途径中富集。生物信息学分析还预测,ITE会根据胎儿性别改变胎盘中免疫细胞的浸润。这些数据表明,内源性AhR配体的过度调节可能导致PE血管功能受损,胎儿性别特异性转录组和胎盘免疫细胞浸润被破坏。这些AhR配体诱导的deg和途径可能是pe诱导的心血管功能障碍的有希望的治疗靶点。内源性AhR配体(ITE)升高妊娠大鼠孕妇血压和蛋白尿,减少子宫胎盘血流量和胎儿和胎盘生长,这些都是先兆子痫的标志。ITE降低大鼠胎盘血管密度,改变免疫细胞分布。ITE以胎儿性别特异性的方式在大鼠胎盘中失调转录组。这些ite失调的基因和途径与心脏疾病、血管功能和炎症反应高度相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Physiology-London
Journal of Physiology-London 医学-神经科学
CiteScore
9.70
自引率
7.30%
发文量
817
审稿时长
2 months
期刊介绍: The Journal of Physiology publishes full-length original Research Papers and Techniques for Physiology, which are short papers aimed at disseminating new techniques for physiological research. Articles solicited by the Editorial Board include Perspectives, Symposium Reports and Topical Reviews, which highlight areas of special physiological interest. CrossTalk articles are short editorial-style invited articles framing a debate between experts in the field on controversial topics. Letters to the Editor and Journal Club articles are also published. All categories of papers are subjected to peer reivew. The Journal of Physiology welcomes submitted research papers in all areas of physiology. Authors should present original work that illustrates new physiological principles or mechanisms. Papers on work at the molecular level, at the level of the cell membrane, single cells, tissues or organs and on systems physiology are all acceptable. Theoretical papers and papers that use computational models to further our understanding of physiological processes will be considered if based on experimentally derived data and if the hypothesis advanced is directly amenable to experimental testing. While emphasis is on human and mammalian physiology, work on lower vertebrate or invertebrate preparations may be suitable if it furthers the understanding of the functioning of other organisms including mammals.
期刊最新文献
Synaptic loss in motor neurons precipitates age-related dysphagia: Middle agers gotta keep in touch! A first morphological and electrophysiological characterization of Fañanas cells of the mouse cerebellum. Dendritic alterations precede age-related dysphagia and nucleus ambiguus motor neuron death. Placental mitochondrial metabolic adaptation maintains cellular energy balance in pregnancy complicated by gestational hypoxia. Multinucleation as a buffer against gene expression noise in syncytial myofibres.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1