A framework for generating recommendations based on trust in an informal e-learning environment.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE PeerJ Computer Science Pub Date : 2024-10-31 eCollection Date: 2024-01-01 DOI:10.7717/peerj-cs.2386
Amjad Rehman, Adeel Ahmed, Tahani Jaser Alahmadi, Abeer Rashad Mirdad, Bayan Al Ghofaily, Khalid Saleem
{"title":"A framework for generating recommendations based on trust in an informal e-learning environment.","authors":"Amjad Rehman, Adeel Ahmed, Tahani Jaser Alahmadi, Abeer Rashad Mirdad, Bayan Al Ghofaily, Khalid Saleem","doi":"10.7717/peerj-cs.2386","DOIUrl":null,"url":null,"abstract":"<p><p>Rapid advancement in information technology promotes the growth of new online learning communities in an e-learning environment that overloads information and data sharing. When a new learner asks a question, how a system recommends the answer is the problem of the learner's cold start. In this article, our contributions are: (i) We proposed a Trust-aware Deep Neural Recommendation (TDNR) framework that addresses learner cold-start issues in informal e-learning by modeling complex nonlinear relationships. (ii) We utilized latent Dirichlet allocation for tag modeling, assigning tag categories to newly posted questions and ranking experts related to specific tags for active questioners based on hub and authority scores. (iii) We enhanced recommendation accuracy in the TDNR model by introducing a degree of trust between questioners and responders. (iv) We incorporated the questioner-responder relational graph, derived from structural preference information, into our proposed model. We evaluated the proposed model on the Stack Overflow dataset using mean absolute precision (MAP), root mean squared error (RMSE), and F-measure metrics. Our significant findings are that TDNR is a hybrid approach that provides more accurate recommendations compared to rating-based and social-trust-based approaches, the proposed model can facilitate the formation of informal e-learning communities, and experiments show that TDNR outperforms the competing methods by an improved margin. The model's robustness, demonstrated by superior MAE, RMSE, and F-measure metrics, makes it a reliable solution for addressing information overload and user sparsity in Stack Overflow. By accurately modeling complex relationships and incorporating trust degrees, TDNR provides more relevant and personalized recommendations, even in cold-start scenarios. This enhances user experience by facilitating the formation of supportive learning communities and ensuring new learners receive accurate recommendations.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"10 ","pages":"e2386"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623215/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2386","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Rapid advancement in information technology promotes the growth of new online learning communities in an e-learning environment that overloads information and data sharing. When a new learner asks a question, how a system recommends the answer is the problem of the learner's cold start. In this article, our contributions are: (i) We proposed a Trust-aware Deep Neural Recommendation (TDNR) framework that addresses learner cold-start issues in informal e-learning by modeling complex nonlinear relationships. (ii) We utilized latent Dirichlet allocation for tag modeling, assigning tag categories to newly posted questions and ranking experts related to specific tags for active questioners based on hub and authority scores. (iii) We enhanced recommendation accuracy in the TDNR model by introducing a degree of trust between questioners and responders. (iv) We incorporated the questioner-responder relational graph, derived from structural preference information, into our proposed model. We evaluated the proposed model on the Stack Overflow dataset using mean absolute precision (MAP), root mean squared error (RMSE), and F-measure metrics. Our significant findings are that TDNR is a hybrid approach that provides more accurate recommendations compared to rating-based and social-trust-based approaches, the proposed model can facilitate the formation of informal e-learning communities, and experiments show that TDNR outperforms the competing methods by an improved margin. The model's robustness, demonstrated by superior MAE, RMSE, and F-measure metrics, makes it a reliable solution for addressing information overload and user sparsity in Stack Overflow. By accurately modeling complex relationships and incorporating trust degrees, TDNR provides more relevant and personalized recommendations, even in cold-start scenarios. This enhances user experience by facilitating the formation of supportive learning communities and ensuring new learners receive accurate recommendations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在非正式电子学习环境中基于信任生成建议的框架。
信息技术的快速发展促进了信息和数据共享超载的电子学习环境中新的在线学习社区的增长。当一个新学习者提出一个问题时,系统如何推荐答案是学习者冷启动的问题。在本文中,我们的贡献是:(i)我们提出了一个信任感知深度神经推荐(TDNR)框架,该框架通过建模复杂的非线性关系来解决非正式电子学习中的学习者冷启动问题。(ii)我们利用潜在的Dirichlet分配进行标签建模,为新发布的问题分配标签类别,并根据hub和权威分数对活跃提问者的特定标签相关的专家进行排名。(iii)我们通过在提问者和应答者之间引入一定程度的信任来提高TDNR模型中的推荐准确性。(iv)我们将从结构性偏好信息中得出的提问者-应答者关系图纳入到我们提出的模型中。我们使用平均绝对精度(MAP)、均方根误差(RMSE)和F-measure指标在Stack Overflow数据集上评估了所提出的模型。我们的重要发现是,与基于评级和基于社会信任的方法相比,TDNR是一种提供更准确推荐的混合方法,所提出的模型可以促进非正式电子学习社区的形成,实验表明,TDNR比竞争方法的表现要好得多。该模型的鲁棒性,由优越的MAE、RMSE和F-measure指标证明,使其成为解决堆栈溢出中的信息过载和用户稀疏性的可靠解决方案。通过对复杂关系进行精确建模并纳入信任程度,TDNR即使在冷启动场景中也能提供更相关和个性化的建议。这通过促进支持性学习社区的形成和确保新学习者获得准确的建议来增强用户体验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
期刊最新文献
Design of a 3D emotion mapping model for visual feature analysis using improved Gaussian mixture models. Enhancing task execution: a dual-layer approach with multi-queue adaptive priority scheduling. LOGIC: LLM-originated guidance for internal cognitive improvement of small language models in stance detection. Generative AI and future education: a review, theoretical validation, and authors' perspective on challenges and solutions. MSR-UNet: enhancing multi-scale and long-range dependencies in medical image segmentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1