Measurement of sulfur content in coal mining areas by using field-remote sensing data and an integrated deep learning model.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE PeerJ Computer Science Pub Date : 2024-11-04 eCollection Date: 2024-01-01 DOI:10.7717/peerj-cs.2458
Jingyi Liu, Ba Tuan Le
{"title":"Measurement of sulfur content in coal mining areas by using field-remote sensing data and an integrated deep learning model.","authors":"Jingyi Liu, Ba Tuan Le","doi":"10.7717/peerj-cs.2458","DOIUrl":null,"url":null,"abstract":"<p><p>High-quality coal emits a smaller amount of harmful substances during the combustion process, which greatly reduces the environmental hazard. The sulfur content of coal is one of the important indicators that determine coal quality. The world's demand for high-quality coal is increasing. This is challenging for the coal mining industry. Therefore, how to quickly determine the sulfur content of coal in coal mining areas has always been a research difficulty. This study is the first to map the distribution of sulfur content in opencast coal mines using field-remote sensing data, and propose a novel method for evaluating coal mine composition. We collected remote sensing, field visible and near-infrared (Vis-NIR) spectroscopy data and built analytical models based on a tiny neural network based on the convolutional neural network. The experimental results show that the proposed method can effectively analyze the coal sulfur content. The coal recognition accuracy is 99.65%, the root-mean-square error is 0.073 and the R is 0.87, and is better than support vector machines and partial least squares methods. Compared with traditional methods, the proposed method shows many advantages and superior performance.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"10 ","pages":"e2458"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622992/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2458","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

High-quality coal emits a smaller amount of harmful substances during the combustion process, which greatly reduces the environmental hazard. The sulfur content of coal is one of the important indicators that determine coal quality. The world's demand for high-quality coal is increasing. This is challenging for the coal mining industry. Therefore, how to quickly determine the sulfur content of coal in coal mining areas has always been a research difficulty. This study is the first to map the distribution of sulfur content in opencast coal mines using field-remote sensing data, and propose a novel method for evaluating coal mine composition. We collected remote sensing, field visible and near-infrared (Vis-NIR) spectroscopy data and built analytical models based on a tiny neural network based on the convolutional neural network. The experimental results show that the proposed method can effectively analyze the coal sulfur content. The coal recognition accuracy is 99.65%, the root-mean-square error is 0.073 and the R is 0.87, and is better than support vector machines and partial least squares methods. Compared with traditional methods, the proposed method shows many advantages and superior performance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于野外遥感数据和集成深度学习模型的煤矿矿区硫含量测量。
优质煤在燃烧过程中排放的有害物质较少,大大降低了对环境的危害。煤的硫含量是决定煤质的重要指标之一。世界对优质煤炭的需求正在增加。这对煤炭开采行业来说是一个挑战。因此,如何快速测定煤矿矿区煤的硫含量一直是一个研究难点。本研究首次利用野外遥感数据绘制了露天矿硫含量分布,提出了一种评价煤矿成分的新方法。我们收集了遥感、现场可见光和近红外(Vis-NIR)光谱数据,并基于基于卷积神经网络的微型神经网络建立了分析模型。实验结果表明,该方法能有效地分析煤中硫含量。煤的识别准确率为99.65%,均方根误差为0.073,R为0.87,优于支持向量机和偏最小二乘法。与传统方法相比,该方法具有许多优点和优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
期刊最新文献
Design of a 3D emotion mapping model for visual feature analysis using improved Gaussian mixture models. Enhancing task execution: a dual-layer approach with multi-queue adaptive priority scheduling. LOGIC: LLM-originated guidance for internal cognitive improvement of small language models in stance detection. Generative AI and future education: a review, theoretical validation, and authors' perspective on challenges and solutions. MSR-UNet: enhancing multi-scale and long-range dependencies in medical image segmentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1