Simulation methods realized by virtual reality modeling language for 3D animation considering fuzzy model recognition.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE PeerJ Computer Science Pub Date : 2024-11-13 eCollection Date: 2024-01-01 DOI:10.7717/peerj-cs.2354
Yu Zhu, Shifan Xie
{"title":"Simulation methods realized by virtual reality modeling language for 3D animation considering fuzzy model recognition.","authors":"Yu Zhu, Shifan Xie","doi":"10.7717/peerj-cs.2354","DOIUrl":null,"url":null,"abstract":"<p><p>The creation of 3D animation increasingly prioritizes the enhancement of character effects, narrative depth, and audience engagement to address the growing demands for visual stimulation, cultural enrichment, and interactive experiences. The advancement of virtual reality (VR) animation is anticipated to require sustained collaboration among researchers, animation experts, and hardware developers over an extended period to achieve full maturity. This article explores the use of Virtual Reality Modeling Language (VRML) in generating 3D stereoscopic forms and environments, applying texture mapping, optimizing lighting effects, and establishing interactive user responses, thereby enriching the 3D animation experience. VRML's functionality is further expanded through the integration of script programs in languages such as Java, JavaScript, and VRML Script <i>via</i> the Script node. The implementation of fuzzy model recognition within 3D animation simulations enhances the identification of textual, musical, and linguistic elements, resulting in improved frame rates. This study also analyzes the real-time correlation between the number of polygons and frame rates in a virtual museum animation scene. The findings demonstrate that the frame rate of the 3D animation within this virtual setting consistently exceeds 40 frames per second, thereby ensuring robust real-time performance, preserving the quality of 3D models, and optimizing rendering speed and visual effects without affecting the system's responsiveness to additional functions.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"10 ","pages":"e2354"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623235/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2354","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The creation of 3D animation increasingly prioritizes the enhancement of character effects, narrative depth, and audience engagement to address the growing demands for visual stimulation, cultural enrichment, and interactive experiences. The advancement of virtual reality (VR) animation is anticipated to require sustained collaboration among researchers, animation experts, and hardware developers over an extended period to achieve full maturity. This article explores the use of Virtual Reality Modeling Language (VRML) in generating 3D stereoscopic forms and environments, applying texture mapping, optimizing lighting effects, and establishing interactive user responses, thereby enriching the 3D animation experience. VRML's functionality is further expanded through the integration of script programs in languages such as Java, JavaScript, and VRML Script via the Script node. The implementation of fuzzy model recognition within 3D animation simulations enhances the identification of textual, musical, and linguistic elements, resulting in improved frame rates. This study also analyzes the real-time correlation between the number of polygons and frame rates in a virtual museum animation scene. The findings demonstrate that the frame rate of the 3D animation within this virtual setting consistently exceeds 40 frames per second, thereby ensuring robust real-time performance, preserving the quality of 3D models, and optimizing rendering speed and visual effects without affecting the system's responsiveness to additional functions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑模糊模型识别的虚拟现实建模语言实现三维动画仿真方法。
3D动画的创作越来越注重增强角色效果、叙事深度和观众参与度,以满足人们对视觉刺激、文化丰富和互动体验日益增长的需求。虚拟现实(VR)动画的发展预计需要研究人员、动画专家和硬件开发人员在很长一段时间内持续合作,以实现完全成熟。本文探讨了虚拟现实建模语言(VRML)在生成三维立体形态和环境、应用纹理映射、优化灯光效果、建立交互式用户响应等方面的应用,从而丰富了三维动画体验。通过script节点集成Java、JavaScript和VRML script等语言的脚本程序,进一步扩展了VRML的功能。在3D动画模拟中实现模糊模型识别增强了对文本、音乐和语言元素的识别,从而提高了帧率。本研究还分析了虚拟博物馆动画场景中多边形数量与帧率之间的实时相关性。研究结果表明,在这种虚拟设置下,3D动画的帧率始终超过每秒40帧,从而确保了强大的实时性能,保持了3D模型的质量,优化了渲染速度和视觉效果,而不会影响系统对其他功能的响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
期刊最新文献
Design of a 3D emotion mapping model for visual feature analysis using improved Gaussian mixture models. Enhancing task execution: a dual-layer approach with multi-queue adaptive priority scheduling. LOGIC: LLM-originated guidance for internal cognitive improvement of small language models in stance detection. Generative AI and future education: a review, theoretical validation, and authors' perspective on challenges and solutions. MSR-UNet: enhancing multi-scale and long-range dependencies in medical image segmentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1