Multimodal biometric identification: leveraging convolutional neural network (CNN) architectures and fusion techniques with fingerprint and finger vein data.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE PeerJ Computer Science Pub Date : 2024-10-31 eCollection Date: 2024-01-01 DOI:10.7717/peerj-cs.2440
Amal Alshardan, Arun Kumar, Mohammed Alghamdi, Mashael Maashi, Saad Alahmari, Abeer A K Alharbi, Wafa Almukadi, Yazeed Alzahrani
{"title":"Multimodal biometric identification: leveraging convolutional neural network (CNN) architectures and fusion techniques with fingerprint and finger vein data.","authors":"Amal Alshardan, Arun Kumar, Mohammed Alghamdi, Mashael Maashi, Saad Alahmari, Abeer A K Alharbi, Wafa Almukadi, Yazeed Alzahrani","doi":"10.7717/peerj-cs.2440","DOIUrl":null,"url":null,"abstract":"<p><p>Advancements in multimodal biometrics, which integrate multiple biometric traits, promise to enhance the accuracy and robustness of identification systems. This study focuses on improving multimodal biometric identification by using fingerprint and finger vein images as the primary traits. We utilized the \"NUPT-FPV\" dataset, which contains a substantial number of finger vein and fingerprint images, which significantly aided our research. Convolutional neural networks (CNNs), renowned for their efficacy in computer vision tasks, are used in our model to extract distinct discriminative features. Specifically, we incorporate three popular CNN architectures: ResNet, VGGNet, and DenseNet. We explore three fusion strategies used in security applications: early fusion, late fusion, and score-level fusion. Early fusion integrates raw images at the input layer of a single CNN, combining information at the initial stages. Late fusion, in contrast, merges features after individual learning from each CNN model. Score-level fusion employs weighted aggregation to combine scores from each modality, leveraging the complementary information they provide. We also use contrast limited adaptive histogram equalization (CLAHE) to enhance fingerprint contrast and vein pattern features, improving feature visibility and extraction. Our evaluation metrics include accuracy, equal error rate (EER), and ROC curves. The fusion of CNN architectures and enhancement methods shows promising performance in identifying multimodal biometrics, aiming to increase identification accuracy. The proposed model offers a reliable authentication system using multiple biometrics to verify identity.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"10 ","pages":"e2440"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623012/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2440","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Advancements in multimodal biometrics, which integrate multiple biometric traits, promise to enhance the accuracy and robustness of identification systems. This study focuses on improving multimodal biometric identification by using fingerprint and finger vein images as the primary traits. We utilized the "NUPT-FPV" dataset, which contains a substantial number of finger vein and fingerprint images, which significantly aided our research. Convolutional neural networks (CNNs), renowned for their efficacy in computer vision tasks, are used in our model to extract distinct discriminative features. Specifically, we incorporate three popular CNN architectures: ResNet, VGGNet, and DenseNet. We explore three fusion strategies used in security applications: early fusion, late fusion, and score-level fusion. Early fusion integrates raw images at the input layer of a single CNN, combining information at the initial stages. Late fusion, in contrast, merges features after individual learning from each CNN model. Score-level fusion employs weighted aggregation to combine scores from each modality, leveraging the complementary information they provide. We also use contrast limited adaptive histogram equalization (CLAHE) to enhance fingerprint contrast and vein pattern features, improving feature visibility and extraction. Our evaluation metrics include accuracy, equal error rate (EER), and ROC curves. The fusion of CNN architectures and enhancement methods shows promising performance in identifying multimodal biometrics, aiming to increase identification accuracy. The proposed model offers a reliable authentication system using multiple biometrics to verify identity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多模态生物识别:利用卷积神经网络(CNN)架构和指纹和手指静脉数据融合技术。
多模态生物识别技术的进步,集成了多种生物特征,有望提高识别系统的准确性和鲁棒性。本研究以指纹和指静脉图像为主要特征,改进多模态生物特征识别。我们利用了“NUPT-FPV”数据集,其中包含大量的手指静脉和指纹图像,这对我们的研究有很大的帮助。卷积神经网络(cnn)以其在计算机视觉任务中的有效性而闻名,在我们的模型中使用卷积神经网络来提取不同的判别特征。具体来说,我们结合了三种流行的CNN架构:ResNet, VGGNet和DenseNet。我们探讨了安全应用中使用的三种融合策略:早期融合、晚期融合和分数级融合。早期的融合是在单个CNN的输入层整合原始图像,结合初始阶段的信息。相比之下,后期融合是在从每个CNN模型中单独学习后合并特征。分数级融合使用加权聚合来组合来自每种模式的分数,利用它们提供的互补信息。我们还使用对比度有限的自适应直方图均衡化(CLAHE)来增强指纹对比度和静脉特征,提高特征的可见性和提取。我们的评估指标包括准确率、相等错误率(EER)和ROC曲线。CNN架构与增强方法的融合在识别多模态生物特征方面表现出良好的性能,旨在提高识别精度。该模型提供了一个使用多种生物特征来验证身份的可靠认证系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
期刊最新文献
Design of a 3D emotion mapping model for visual feature analysis using improved Gaussian mixture models. Enhancing task execution: a dual-layer approach with multi-queue adaptive priority scheduling. LOGIC: LLM-originated guidance for internal cognitive improvement of small language models in stance detection. Generative AI and future education: a review, theoretical validation, and authors' perspective on challenges and solutions. MSR-UNet: enhancing multi-scale and long-range dependencies in medical image segmentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1