Probability-boosting technique for combinatorial optimization.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE PeerJ Computer Science Pub Date : 2024-11-20 eCollection Date: 2024-01-01 DOI:10.7717/peerj-cs.2499
Sanpawat Kantabutra
{"title":"Probability-boosting technique for combinatorial optimization.","authors":"Sanpawat Kantabutra","doi":"10.7717/peerj-cs.2499","DOIUrl":null,"url":null,"abstract":"<p><p>In many combinatorial optimization problems we want a particular set of k out of n items with some certain properties (or constraints). These properties may involve the k items. In the worst case a deterministic algorithm must scan n-k items in the set to verify the k items. If we pick a set of k items randomly and verify the properties, it will take about (n/k)<sup>k</sup> verifications, which can be a really large number for some values of k and n. In this article we introduce a significantly faster randomized strategy with very high probability to pick the set of such k items by amplifying the probability of obtaining a target set of k items and show how this probability boosting technique can be applied to solve three different combinatorial optimization problems efficiently. In all three applications algorithms that use the probability boosting technique show superiority over their deterministic counterparts.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"10 ","pages":"e2499"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623238/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2499","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In many combinatorial optimization problems we want a particular set of k out of n items with some certain properties (or constraints). These properties may involve the k items. In the worst case a deterministic algorithm must scan n-k items in the set to verify the k items. If we pick a set of k items randomly and verify the properties, it will take about (n/k)k verifications, which can be a really large number for some values of k and n. In this article we introduce a significantly faster randomized strategy with very high probability to pick the set of such k items by amplifying the probability of obtaining a target set of k items and show how this probability boosting technique can be applied to solve three different combinatorial optimization problems efficiently. In all three applications algorithms that use the probability boosting technique show superiority over their deterministic counterparts.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
组合优化的概率提升技术。
在许多组合优化问题中,我们需要n个项目中的k个具有某些属性(或约束)的特定集合。这些属性可能涉及k项。在最坏的情况下,确定性算法必须扫描集合中的n-k个项目来验证k个项目。如果我们随机选取一组k项来验证属性,它将需要(n/k)k次验证,对于k和n的某些值来说,这可能是一个非常大的数字。在本文中,我们介绍了一种显著更快的随机化策略,通过放大获得k个项目目标集的概率,以非常高的概率选择k个项目的集合,并展示了如何将这种概率提升技术应用于有效地解决三个不同的组合优化问题。在所有这三种应用中,使用概率提升技术的算法比它们的确定性对应物表现出优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
期刊最新文献
Design of a 3D emotion mapping model for visual feature analysis using improved Gaussian mixture models. Enhancing task execution: a dual-layer approach with multi-queue adaptive priority scheduling. LOGIC: LLM-originated guidance for internal cognitive improvement of small language models in stance detection. Generative AI and future education: a review, theoretical validation, and authors' perspective on challenges and solutions. MSR-UNet: enhancing multi-scale and long-range dependencies in medical image segmentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1