Unsupervised learning analysis on the proteomes of Zika virus.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE PeerJ Computer Science Pub Date : 2024-11-11 eCollection Date: 2024-01-01 DOI:10.7717/peerj-cs.2443
Edgar E Lara-Ramírez, Gildardo Rivera, Amanda Alejandra Oliva-Hernández, Virgilio Bocanegra-Garcia, Jesús Adrián López, Xianwu Guo
{"title":"Unsupervised learning analysis on the proteomes of Zika virus.","authors":"Edgar E Lara-Ramírez, Gildardo Rivera, Amanda Alejandra Oliva-Hernández, Virgilio Bocanegra-Garcia, Jesús Adrián López, Xianwu Guo","doi":"10.7717/peerj-cs.2443","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The Zika virus (ZIKV), which is transmitted by mosquito vectors to nonhuman primates and humans, causes devastating outbreaks in the poorest tropical regions of the world. Molecular epidemiology, supported by clustering phylogenetic gold standard studies using sequence data, has provided valuable information for tracking and controlling the spread of ZIKV. Unsupervised learning (UL), a form of machine learning algorithm, can be applied on the datasets without the need of known information for training.</p><p><strong>Methods: </strong>In this work, unsupervised Random Forest (URF), followed by the application of dimensional reduction algorithms such as principal component analysis (PCA), Uniform Manifold Approximation and Projection (UMAP), t-distributed stochastic neighbor embedding (t-SNE), and autoencoders were used to uncover hidden patterns from polymorphic amino acid sites extracted on the proteome ZIKV multi-alignments, without the need of an underlying evolutionary model.</p><p><strong>Results: </strong>The four UL algorithms revealed specific host and geographical clustering patterns for ZIKV. Among the four dimensionality reduction (DR) algorithms, the performance was better for UMAP. The four algorithms allowed the identification of imported viruses for specific geographical clusters. The UL dimension coordinates showed a significant correlation with phylogenetic tree branch lengths and significant phylogenetic dependence in Abouheif's Cmean and Pagel's Lambda tests (p value < 0.01) that showed comparable performance with the phylogenetic method. This analytical strategy was generalizable to an external large dengue type 2 dataset.</p><p><strong>Conclusion: </strong>These UL algorithms could be practical evolutionary analytical techniques to track the dispersal of viral pathogens.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"10 ","pages":"e2443"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623125/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2443","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The Zika virus (ZIKV), which is transmitted by mosquito vectors to nonhuman primates and humans, causes devastating outbreaks in the poorest tropical regions of the world. Molecular epidemiology, supported by clustering phylogenetic gold standard studies using sequence data, has provided valuable information for tracking and controlling the spread of ZIKV. Unsupervised learning (UL), a form of machine learning algorithm, can be applied on the datasets without the need of known information for training.

Methods: In this work, unsupervised Random Forest (URF), followed by the application of dimensional reduction algorithms such as principal component analysis (PCA), Uniform Manifold Approximation and Projection (UMAP), t-distributed stochastic neighbor embedding (t-SNE), and autoencoders were used to uncover hidden patterns from polymorphic amino acid sites extracted on the proteome ZIKV multi-alignments, without the need of an underlying evolutionary model.

Results: The four UL algorithms revealed specific host and geographical clustering patterns for ZIKV. Among the four dimensionality reduction (DR) algorithms, the performance was better for UMAP. The four algorithms allowed the identification of imported viruses for specific geographical clusters. The UL dimension coordinates showed a significant correlation with phylogenetic tree branch lengths and significant phylogenetic dependence in Abouheif's Cmean and Pagel's Lambda tests (p value < 0.01) that showed comparable performance with the phylogenetic method. This analytical strategy was generalizable to an external large dengue type 2 dataset.

Conclusion: These UL algorithms could be practical evolutionary analytical techniques to track the dispersal of viral pathogens.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
寨卡病毒蛋白质组学的无监督学习分析。
背景:寨卡病毒(ZIKV)通过蚊子媒介传播给非人类灵长类动物和人类,在世界最贫穷的热带地区造成毁灭性的疫情。分子流行病学在利用序列数据进行聚类系统发育金标准研究的支持下,为追踪和控制寨卡病毒的传播提供了有价值的信息。无监督学习(UL)是一种机器学习算法,可以在不需要已知信息的情况下应用于数据集进行训练。方法:采用无监督随机森林(unsupervised Random Forest, URF),然后应用降维算法,如主成分分析(PCA)、均匀流形逼近和投影(UMAP)、t分布随机邻居嵌入(t-SNE)和自动编码器,在不需要潜在进化模型的情况下,从蛋白质组ZIKV多序列上提取的多态性氨基酸位点中发现隐藏模式。结果:4种UL算法揭示了寨卡病毒特定的宿主和地理聚类模式。在四种降维算法中,UMAP算法的性能较好。这四种算法可以识别特定地理集群的输入病毒。在Abouheif's Cmean和Pagel's Lambda检验中,UL维坐标与系统发育树分支长度显著相关,且系统发育依赖性显著(p值< 0.01),与系统发育方法表现出相当的性能。该分析策略可推广到外部大型2型登革热数据集。结论:该算法可作为跟踪病毒病原体传播的实用进化分析技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
期刊最新文献
Design of a 3D emotion mapping model for visual feature analysis using improved Gaussian mixture models. Enhancing task execution: a dual-layer approach with multi-queue adaptive priority scheduling. LOGIC: LLM-originated guidance for internal cognitive improvement of small language models in stance detection. Generative AI and future education: a review, theoretical validation, and authors' perspective on challenges and solutions. MSR-UNet: enhancing multi-scale and long-range dependencies in medical image segmentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1