Jinwoo Kim , Hyeon Ji Lee , Eun Ae Choi , Jung Ho Lee , Jin Oh , Dae-Heung Byeon , Hyo Sung Kwak , Chan Hee Park
{"title":"Effects of structural design on the mechanical performances of poly-L-lactic acid cardiovascular scaffolds using FEA and in vitro methods","authors":"Jinwoo Kim , Hyeon Ji Lee , Eun Ae Choi , Jung Ho Lee , Jin Oh , Dae-Heung Byeon , Hyo Sung Kwak , Chan Hee Park","doi":"10.1016/j.jmbbm.2024.106849","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>In this study, we propose distinct and novel types of scaffold geometries to improve the mechanical performance of Poly-L-lactic Acid (PLLA) bioresorbable vascular scaffolds (BVS), investigating how different geometries of PLLA BVS influence their mechanical performances through finite element analysis (FEA) and in vitro experiment methods.</div></div><div><h3>Methods</h3><div>Four different types of scaffold geometries were modelled for FEA and manufactured for in vitro experiments. PLLA tubes with 110 μm thickness were used in manufacturing the scaffolds. For FEA measurements, material properties and bilinear material models were obtained from tensile testing using the PLLA tubes employed for manufacturing. Various measurements were conducted including crush resistance, radial strength in both the laser-cut and deployed state, three-point bending, and scaffold crimping/expansion test.</div></div><div><h3>Results</h3><div>Overall, the FEA results were similar to the experimental results. Design A, which had a conventional open-cell geometry with straight bridges, showed inferior crush resistance and radial strength to those of the other tested geometries. Design B exhibited the most well-balanced scaffold performances in terms of radial strengths, crush resistance, three-point bending, and crimping/expansion behaviors. Notably, it showed minimum plastic strain during crimping and expanding deformations in FEA.</div></div><div><h3>Conclusions</h3><div>Findings from such distinct and novel types of scaffold geometries shown by this study may provide a valuable understanding using PLLA scaffolds as cardiovascular devices.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"163 ","pages":"Article 106849"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616124004818","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
In this study, we propose distinct and novel types of scaffold geometries to improve the mechanical performance of Poly-L-lactic Acid (PLLA) bioresorbable vascular scaffolds (BVS), investigating how different geometries of PLLA BVS influence their mechanical performances through finite element analysis (FEA) and in vitro experiment methods.
Methods
Four different types of scaffold geometries were modelled for FEA and manufactured for in vitro experiments. PLLA tubes with 110 μm thickness were used in manufacturing the scaffolds. For FEA measurements, material properties and bilinear material models were obtained from tensile testing using the PLLA tubes employed for manufacturing. Various measurements were conducted including crush resistance, radial strength in both the laser-cut and deployed state, three-point bending, and scaffold crimping/expansion test.
Results
Overall, the FEA results were similar to the experimental results. Design A, which had a conventional open-cell geometry with straight bridges, showed inferior crush resistance and radial strength to those of the other tested geometries. Design B exhibited the most well-balanced scaffold performances in terms of radial strengths, crush resistance, three-point bending, and crimping/expansion behaviors. Notably, it showed minimum plastic strain during crimping and expanding deformations in FEA.
Conclusions
Findings from such distinct and novel types of scaffold geometries shown by this study may provide a valuable understanding using PLLA scaffolds as cardiovascular devices.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.