A Forward and Backward Compatible Framework for Few-Shot Class-Incremental Pill Recognition

IF 8.9 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE transactions on neural networks and learning systems Pub Date : 2024-12-11 DOI:10.1109/TNNLS.2024.3497956
Jinghua Zhang;Li Liu;Kai Gao;Dewen Hu
{"title":"A Forward and Backward Compatible Framework for Few-Shot Class-Incremental Pill Recognition","authors":"Jinghua Zhang;Li Liu;Kai Gao;Dewen Hu","doi":"10.1109/TNNLS.2024.3497956","DOIUrl":null,"url":null,"abstract":"Automatic pill recognition (APR) systems are crucial for enhancing hospital efficiency, assisting visually impaired individuals, and preventing cross-infection. However, most existing deep learning-based pill recognition systems can only perform classification on classes with sufficient training data. In practice, the high cost of data annotation and the continuous increase in new pill classes necessitate the development of a few-shot class-incremental pill recognition (FSCIPR) system. This article introduces the first FSCIPR framework, discriminative and bidirectional compatible few-shot class-incremental learning (DBC-FSCIL). It encompasses forward-compatible and backward-compatible learning components. In forward-compatible learning, we propose an innovative virtual class generation strategy and a center-triplet (CT) loss to enhance discriminative feature learning. These virtual classes serve as placeholders in the feature space for future class updates, providing diverse semantic knowledge for model training. For backward-compatible learning, we develop a strategy to synthesize reliable pseudo-features of old classes using uncertainty quantification, facilitating data replay (DR) and knowledge distillation (KD). This approach allows for the flexible synthesis of features and effectively reduces additional storage requirements for samples and models. Additionally, we construct a new pill image dataset for FSCIL and assess various mainstream FSCIL methods, establishing new benchmarks. Our experimental results demonstrate that our framework surpasses existing state-of-the-art (SOTA) methods.","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":"36 6","pages":"9837-9851"},"PeriodicalIF":8.9000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks and learning systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10787389/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Automatic pill recognition (APR) systems are crucial for enhancing hospital efficiency, assisting visually impaired individuals, and preventing cross-infection. However, most existing deep learning-based pill recognition systems can only perform classification on classes with sufficient training data. In practice, the high cost of data annotation and the continuous increase in new pill classes necessitate the development of a few-shot class-incremental pill recognition (FSCIPR) system. This article introduces the first FSCIPR framework, discriminative and bidirectional compatible few-shot class-incremental learning (DBC-FSCIL). It encompasses forward-compatible and backward-compatible learning components. In forward-compatible learning, we propose an innovative virtual class generation strategy and a center-triplet (CT) loss to enhance discriminative feature learning. These virtual classes serve as placeholders in the feature space for future class updates, providing diverse semantic knowledge for model training. For backward-compatible learning, we develop a strategy to synthesize reliable pseudo-features of old classes using uncertainty quantification, facilitating data replay (DR) and knowledge distillation (KD). This approach allows for the flexible synthesis of features and effectively reduces additional storage requirements for samples and models. Additionally, we construct a new pill image dataset for FSCIL and assess various mainstream FSCIL methods, establishing new benchmarks. Our experimental results demonstrate that our framework surpasses existing state-of-the-art (SOTA) methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种前后兼容的少针类-增量药丸识别框架
自动药丸识别(APR)系统对于提高医院效率、帮助视障人士和预防交叉感染至关重要。然而,大多数现有的基于深度学习的药丸识别系统只能对具有足够训练数据的类别进行分类。在实践中,由于数据标注的高成本和新药丸类别的不断增加,需要开发少量药丸类别增量识别(FSCIPR)系统。本文介绍了FSCIPR的第一个框架——判别和双向兼容的少次类增量学习(DBC-FSCIL)。它包含向前兼容和向后兼容的学习组件。在前向兼容学习中,我们提出了一种创新的虚拟类生成策略和中心三重态(CT)损失来增强判别特征学习。这些虚拟类作为未来类更新的特征空间中的占位符,为模型训练提供多样化的语义知识。对于向后兼容学习,我们开发了一种策略,利用不确定性量化来合成可靠的旧类伪特征,促进数据重播(DR)和知识蒸馏(KD)。这种方法允许灵活地合成特征,并有效地减少了样本和模型的额外存储需求。此外,我们构建了一个新的FSCIL药物图像数据集,并对各种主流FSCIL方法进行了评估,建立了新的基准。我们的实验结果表明,我们的框架超越了现有的最先进的(SOTA)方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE transactions on neural networks and learning systems
IEEE transactions on neural networks and learning systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
CiteScore
23.80
自引率
9.60%
发文量
2102
审稿时长
3-8 weeks
期刊介绍: The focus of IEEE Transactions on Neural Networks and Learning Systems is to present scholarly articles discussing the theory, design, and applications of neural networks as well as other learning systems. The journal primarily highlights technical and scientific research in this domain.
期刊最新文献
ATTE: An Innovative Ensemble Learning Method With Age-Group-Guided Fine-Tuning for Improving Personalized Blood Pressure Estimation Resource-Efficient and Layer Interdependence-Aware CNN Pruning Leveraging Filter Replacement. Logits-Level Balanced Machine Unlearning for LLM-Based Recommendation System. A Multiobjective Evolutionary Algorithm Based on Bipopulation With Uniform Sampling for Neural Architecture Search. A Survey on Learning Motion Planning and Control for Mobile Robots: Toward Embodied Intelligence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1