{"title":"Twisted Bilayer MoS2 under Electric Fields: A System with Tunable Symmetry","authors":"Aitor Garcia-Ruiz, Ming-Hao Liu","doi":"10.1021/acs.nanolett.4c04556","DOIUrl":null,"url":null,"abstract":"Gate voltages take full advantage of 2D systems, making it possible to explore novel states of matter by controlling their electron concentration or applying perpendicular electric fields. Here, we study the electronic properties of small-angle twisted bilayer MoS<sub>2</sub> under a strong electric field. We show that transport across one of its constituent layers can be effectively regarded as a two-dimensional electron gas under a nanoscale potential. We find that the band structure of such a system is reconstructed following two fundamentally different symmetries depending on the orientation of the external electric field, namely, hexagonal or honeycomb. By studying this system under magnetic fields, we demonstrate that this duality not only translates into two different transport responses but also results in having two different Hofstadter’s spectra. Our work opens up a new route for the creation of controllable artificial superlattices in van der Waals heterostructures.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"1 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04556","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Gate voltages take full advantage of 2D systems, making it possible to explore novel states of matter by controlling their electron concentration or applying perpendicular electric fields. Here, we study the electronic properties of small-angle twisted bilayer MoS2 under a strong electric field. We show that transport across one of its constituent layers can be effectively regarded as a two-dimensional electron gas under a nanoscale potential. We find that the band structure of such a system is reconstructed following two fundamentally different symmetries depending on the orientation of the external electric field, namely, hexagonal or honeycomb. By studying this system under magnetic fields, we demonstrate that this duality not only translates into two different transport responses but also results in having two different Hofstadter’s spectra. Our work opens up a new route for the creation of controllable artificial superlattices in van der Waals heterostructures.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.