Plasmonic Metal Oxide Nanocrystals as Building Blocks for Infrared Metasurfaces

IF 14 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of materials research Pub Date : 2024-12-10 DOI:10.1021/accountsmr.4c00302
Woo Je Chang, Allison M. Green, Zarko Sakotic, Daniel Wasserman, Thomas M. Truskett, Delia J. Milliron
{"title":"Plasmonic Metal Oxide Nanocrystals as Building Blocks for Infrared Metasurfaces","authors":"Woo Je Chang, Allison M. Green, Zarko Sakotic, Daniel Wasserman, Thomas M. Truskett, Delia J. Milliron","doi":"10.1021/accountsmr.4c00302","DOIUrl":null,"url":null,"abstract":"Metamaterials operating at infrared (IR) frequencies have garnered significant attention due to the opportunities for resonant interactions with vibrational modes of molecules and materials and manipulation of thermal emission. These metamaterials usually consist of periodic arrangements of subwavelength scale metallic or dielectric elements, patterned either top-down by nanolithographic methods or bottom-up by nanocrystal (NC) assembly. However, conventional metals are inherently constrained by their fixed electron concentrations, which limits the degrees of freedom in the design of the meta-atom unit cells to achieve the desired optical response. In this context, doped metal oxide NCs, with the prototypical case being tin-doped indium oxide (ITO) NCs, are exceptional candidates for self-assembled IR metamaterials, owing to their relatively low and synthetically tunable electron concentrations that govern the frequencies of their IR plasmon resonances. Focusing on ITO NCs as building blocks, this Account describes recent progress in the synthetic tuning of NC optical properties, NC superlattice monolayer preparation methods for fabricating IR resonant metamaterials, and the emerging understanding of the optical response, facilitated by recently developed simulation methods.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"49 1","pages":""},"PeriodicalIF":14.0000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of materials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/accountsmr.4c00302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Metamaterials operating at infrared (IR) frequencies have garnered significant attention due to the opportunities for resonant interactions with vibrational modes of molecules and materials and manipulation of thermal emission. These metamaterials usually consist of periodic arrangements of subwavelength scale metallic or dielectric elements, patterned either top-down by nanolithographic methods or bottom-up by nanocrystal (NC) assembly. However, conventional metals are inherently constrained by their fixed electron concentrations, which limits the degrees of freedom in the design of the meta-atom unit cells to achieve the desired optical response. In this context, doped metal oxide NCs, with the prototypical case being tin-doped indium oxide (ITO) NCs, are exceptional candidates for self-assembled IR metamaterials, owing to their relatively low and synthetically tunable electron concentrations that govern the frequencies of their IR plasmon resonances. Focusing on ITO NCs as building blocks, this Account describes recent progress in the synthetic tuning of NC optical properties, NC superlattice monolayer preparation methods for fabricating IR resonant metamaterials, and the emerging understanding of the optical response, facilitated by recently developed simulation methods.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.70
自引率
0.00%
发文量
0
期刊最新文献
Molecular Acenes for Light Capture, Conversion, and Storage Use of Materials Science to Understand Haptic Perception Fiber Sorbents – A Versatile Platform for Sorption-Based Gas Separations Plasmonic Metal Oxide Nanocrystals as Building Blocks for Infrared Metasurfaces Piezoionic Skin Sensors for Wearable Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1