Chemistry of Street Art: Neural Network for the Spectral Analysis of Berlin Wall Colors

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2024-12-11 DOI:10.1021/jacs.4c12611
Francesco Armetta, Monika Baublytė, Martina Lucia, Rosina Celeste Ponterio, Dario Giuffrida, Maria Luisa Saladino, Santino Orecchio
{"title":"Chemistry of Street Art: Neural Network for the Spectral Analysis of Berlin Wall Colors","authors":"Francesco Armetta, Monika Baublytė, Martina Lucia, Rosina Celeste Ponterio, Dario Giuffrida, Maria Luisa Saladino, Santino Orecchio","doi":"10.1021/jacs.4c12611","DOIUrl":null,"url":null,"abstract":"This research starts with the analysis of some fragments of the Berlin Wall street art for the characterization of the painting materials. The spectroscopic results provide a general description of the paint executive technique but more importantly open the way to a new advantage of Raman application to the analytic analysis of acrylic colors. The study highlights the correlation between peak intensity and compound percentage and explores the powerful application of deep learning for the quantification of a pigment mixture in the acrylic commercial products from Raman spectra acquired with hand-held equipment (BRAVO by Bruker). The study reveals the ability of the convolutional neural network (CNN) algorithm to analyze the spectra and predict the ratio between the coloring compounds. The reference materials for calibration and training were obtained by the dilution of commercial acrylic colors commonly practiced by street artists, using Schmincke brand paints. For the first time, Raman investigation provides valuable insights into calibrations for determining dye dilution in mixtures of commercial products, offering a new opportunity for analytical quantification with Raman hand-held spectrometers and contributing to a comprehensive understanding of artists’ techniques and materials in street art.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"200 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c12611","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This research starts with the analysis of some fragments of the Berlin Wall street art for the characterization of the painting materials. The spectroscopic results provide a general description of the paint executive technique but more importantly open the way to a new advantage of Raman application to the analytic analysis of acrylic colors. The study highlights the correlation between peak intensity and compound percentage and explores the powerful application of deep learning for the quantification of a pigment mixture in the acrylic commercial products from Raman spectra acquired with hand-held equipment (BRAVO by Bruker). The study reveals the ability of the convolutional neural network (CNN) algorithm to analyze the spectra and predict the ratio between the coloring compounds. The reference materials for calibration and training were obtained by the dilution of commercial acrylic colors commonly practiced by street artists, using Schmincke brand paints. For the first time, Raman investigation provides valuable insights into calibrations for determining dye dilution in mixtures of commercial products, offering a new opportunity for analytical quantification with Raman hand-held spectrometers and contributing to a comprehensive understanding of artists’ techniques and materials in street art.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Unraveling the Cleavage Reaction of Hydroxylamines with Cyclopropenones Considering Biocompatibility Chemistry of Street Art: Neural Network for the Spectral Analysis of Berlin Wall Colors Well-Defined Co2 Dual-Atom Catalyst Breaks Scaling Relations of Oxygen Reduction Reaction Ruthenium-Catalyzed Carbocycle-Selective Hydrogenation of Fused Heteroarenes Lewis Acid-Mediated Interfacial Water Supply for Sustainable Proton Exchange Membrane Water Electrolysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1