Green tea polyphenols alleviate di (2-ethylhexyl) phthalate-induced testicular injury in mice via lncRNA-miRNA-mRNA axis.

IF 3.1 2区 生物学 Q2 REPRODUCTIVE BIOLOGY Biology of Reproduction Pub Date : 2024-12-10 DOI:10.1093/biolre/ioae179
Heng Shi, Xin-Hai Zhao, Qin Peng, Xian-Ling Zhou, Si-Si Liu, Chuan-Chuan Sun, Qiu-Yu Cao, Shi-Ping Zhu, Sheng-Yun Sun
{"title":"Green tea polyphenols alleviate di (2-ethylhexyl) phthalate-induced testicular injury in mice via lncRNA-miRNA-mRNA axis.","authors":"Heng Shi, Xin-Hai Zhao, Qin Peng, Xian-Ling Zhou, Si-Si Liu, Chuan-Chuan Sun, Qiu-Yu Cao, Shi-Ping Zhu, Sheng-Yun Sun","doi":"10.1093/biolre/ioae179","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Di(2-ethylhexyl) phthalate (DEHP) is a commonly used plasticizer known for its toxic effects on the male reproductive system. Green tea polyphenols (GTPs), recognized for their antioxidant and anti-inflammatory properties, have demonstrated protective effects on various organs, but the mechanisms by which GTPs mitigate DEHP-induced testicular damage remain unclear.</p><p><strong>Methods: </strong>Healthy male C57BL/6 J mice were divided into five groups: Control, DEHP, DEHP + GTP treatment, GTP, and Oil groups. Testicular histopathological changes were assessed using hematoxylin-eosin (H&E), periodic acid-Schiff (PAS), and Masson staining. Ultrastructural alterations were examined through transmission electron microscopy. High-throughput sequencing was performed to analyze the expression of mRNA, miRNA, and lncRNA, and to construct an lncRNA-miRNA-mRNA regulatory network for identifying key regulatory axes.</p><p><strong>Results: </strong>Mice in the DEHP group exhibited significant testicular damage, including reduced sperm count, mitochondrial deformation, and endoplasmic reticulum dilation. GTP treatment notably improved testicular structural integrity, restored sperm count, and alleviated mitochondrial and endoplasmic reticulum damage. Additionally, DEHP significantly increased activated CD8+ T cells, which were reduced with GTP treatment. High-throughput sequencing revealed that GTP treatment exerted protective effects through the regulation of six key lncRNA-miRNA-mRNA axes.</p><p><strong>Conclusion: </strong>GTPs significantly protect against DEHP-induced testicular damage, and the lncRNA-miRNA-mRNA regulatory axes play a potential role in this process.</p>","PeriodicalId":8965,"journal":{"name":"Biology of Reproduction","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology of Reproduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/biolre/ioae179","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Di(2-ethylhexyl) phthalate (DEHP) is a commonly used plasticizer known for its toxic effects on the male reproductive system. Green tea polyphenols (GTPs), recognized for their antioxidant and anti-inflammatory properties, have demonstrated protective effects on various organs, but the mechanisms by which GTPs mitigate DEHP-induced testicular damage remain unclear.

Methods: Healthy male C57BL/6 J mice were divided into five groups: Control, DEHP, DEHP + GTP treatment, GTP, and Oil groups. Testicular histopathological changes were assessed using hematoxylin-eosin (H&E), periodic acid-Schiff (PAS), and Masson staining. Ultrastructural alterations were examined through transmission electron microscopy. High-throughput sequencing was performed to analyze the expression of mRNA, miRNA, and lncRNA, and to construct an lncRNA-miRNA-mRNA regulatory network for identifying key regulatory axes.

Results: Mice in the DEHP group exhibited significant testicular damage, including reduced sperm count, mitochondrial deformation, and endoplasmic reticulum dilation. GTP treatment notably improved testicular structural integrity, restored sperm count, and alleviated mitochondrial and endoplasmic reticulum damage. Additionally, DEHP significantly increased activated CD8+ T cells, which were reduced with GTP treatment. High-throughput sequencing revealed that GTP treatment exerted protective effects through the regulation of six key lncRNA-miRNA-mRNA axes.

Conclusion: GTPs significantly protect against DEHP-induced testicular damage, and the lncRNA-miRNA-mRNA regulatory axes play a potential role in this process.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biology of Reproduction
Biology of Reproduction 生物-生殖生物学
CiteScore
6.30
自引率
5.60%
发文量
214
审稿时长
1 months
期刊介绍: Biology of Reproduction (BOR) is the official journal of the Society for the Study of Reproduction and publishes original research on a broad range of topics in the field of reproductive biology, as well as reviews on topics of current importance or controversy. BOR is consistently one of the most highly cited journals publishing original research in the field of reproductive biology.
期刊最新文献
Correction to: The pathogenesis of endometriosis and adenomyosis: insights from single-cell RNA sequencing. Oxidation of thiol groups in membrane proteins inhibits the fertilization ability and motility of sperm by suppressing calcium influx. Increased EHD1 in trophoblasts causes RSM by activating TGFβ signaling†. Physiological function of gut microbiota and metabolome on successful pregnancy and lactation in the captive Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis)†. Hormonal profiles and biomarkers leading to parturition in cattle†.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1