Transcriptome and epigenome dynamics of the clonal heterogeneity of human induced pluripotent stem cells for cardiac differentiation.

IF 6.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Cellular and Molecular Life Sciences Pub Date : 2024-12-11 DOI:10.1007/s00018-024-05493-9
Jihye Yun, Jaemin So, Seunghee Jeong, Jiye Jang, Soyoung Han, Junseok Jeon, Kyungho Lee, Hye Ryoun Jang, Jaecheol Lee
{"title":"Transcriptome and epigenome dynamics of the clonal heterogeneity of human induced pluripotent stem cells for cardiac differentiation.","authors":"Jihye Yun, Jaemin So, Seunghee Jeong, Jiye Jang, Soyoung Han, Junseok Jeon, Kyungho Lee, Hye Ryoun Jang, Jaecheol Lee","doi":"10.1007/s00018-024-05493-9","DOIUrl":null,"url":null,"abstract":"<p><p>Human induced pluripotent stem cells (hiPSCs) generate multiple clones with inherent heterogeneity, leading to variations in their differentiation capacity. Previous studies have primarily addressed line-to-line variations in differentiation capacity, leaving a gap in the comprehensive understanding of clonal heterogeneity. Here, we aimed to profile the heterogeneity of hiPSC clones and identify predictive biomarkers for cardiomyocyte (CM) differentiation capacity by integrating transcriptomic, epigenomic, endogenous retroelement, and protein kinase phosphorylation profiles. We generated multiple clones from a single donor and validated that these clones exhibited comparable levels of pluripotency markers. The clones were classified into two groups based on their differentiation efficiency to CMs-productive clone (PC) and non-productive clone (NPC). We performed RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin with sequencing (ATAC-seq). NPC was enriched in vasculogenesis and cell adhesion, accompanied by elevated levels of phosphorylated ERK1/2. Conversely, PC exhibited enrichment in embryonic organ development and transcription factor activation, accompanied by increased chromatin accessibility near transcription start site (TSS) regions. Integrative analysis of RNA-seq and ATAC-seq revealed 14 candidate genes correlated with cardiac differentiation potential. Notably, TEK and SDR42E1 were upregulated in NPC. Our integrative profiles enhance the understanding of clonal heterogeneity and highlight two novel biomarkers associated with CM differentiation. This insight may facilitate the identification of suboptimal hiPSC clones, thereby mitigating adverse outcomes in clinical applications.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"2"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11635083/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-024-05493-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Human induced pluripotent stem cells (hiPSCs) generate multiple clones with inherent heterogeneity, leading to variations in their differentiation capacity. Previous studies have primarily addressed line-to-line variations in differentiation capacity, leaving a gap in the comprehensive understanding of clonal heterogeneity. Here, we aimed to profile the heterogeneity of hiPSC clones and identify predictive biomarkers for cardiomyocyte (CM) differentiation capacity by integrating transcriptomic, epigenomic, endogenous retroelement, and protein kinase phosphorylation profiles. We generated multiple clones from a single donor and validated that these clones exhibited comparable levels of pluripotency markers. The clones were classified into two groups based on their differentiation efficiency to CMs-productive clone (PC) and non-productive clone (NPC). We performed RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin with sequencing (ATAC-seq). NPC was enriched in vasculogenesis and cell adhesion, accompanied by elevated levels of phosphorylated ERK1/2. Conversely, PC exhibited enrichment in embryonic organ development and transcription factor activation, accompanied by increased chromatin accessibility near transcription start site (TSS) regions. Integrative analysis of RNA-seq and ATAC-seq revealed 14 candidate genes correlated with cardiac differentiation potential. Notably, TEK and SDR42E1 were upregulated in NPC. Our integrative profiles enhance the understanding of clonal heterogeneity and highlight two novel biomarkers associated with CM differentiation. This insight may facilitate the identification of suboptimal hiPSC clones, thereby mitigating adverse outcomes in clinical applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
心脏分化诱导多能干细胞克隆异质性的转录组学和表观基因组动力学。
人类诱导多能干细胞(hiPSCs)产生具有内在异质性的多个克隆,导致其分化能力的差异。以往的研究主要针对的是分化能力的系间差异,对克隆异质性的全面理解存在空白。在这里,我们旨在通过整合转录组学、表观基因组学、内源性逆转录因子和蛋白激酶磷酸化谱来分析hiPSC克隆的异质性,并确定心肌细胞(CM)分化能力的预测性生物标志物。我们从一个供体中产生了多个克隆,并验证了这些克隆表现出相当水平的多能性标记。根据其向cms高产无性系(PC)和非高产无性系(NPC)的分化效率,将这些无性系分为两类。我们进行了RNA测序(RNA-seq)和转座酶可及染色质测序(ATAC-seq)。NPC血管生成和细胞粘附富集,并伴有磷酸化ERK1/2水平升高。相反,PC在胚胎器官发育和转录因子激活中表现出富集,并伴随着转录起始位点(TSS)附近染色质可及性的增加。RNA-seq和ATAC-seq的综合分析揭示了14个与心脏分化潜能相关的候选基因。值得注意的是,TEK和SDR42E1在NPC中表达上调。我们的整合图谱增强了对克隆异质性的理解,并突出了与CM分化相关的两个新的生物标志物。这一见解可能有助于识别次优hiPSC克隆,从而减轻临床应用中的不良后果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cellular and Molecular Life Sciences
Cellular and Molecular Life Sciences 生物-生化与分子生物学
CiteScore
13.20
自引率
1.20%
发文量
546
审稿时长
1.0 months
期刊介绍: Journal Name: Cellular and Molecular Life Sciences (CMLS) Location: Basel, Switzerland Focus: Multidisciplinary journal Publishes research articles, reviews, multi-author reviews, and visions & reflections articles Coverage: Latest aspects of biological and biomedical research Areas include: Biochemistry and molecular biology Cell biology Molecular and cellular aspects of biomedicine Neuroscience Pharmacology Immunology Additional Features: Welcomes comments on any article published in CMLS Accepts suggestions for topics to be covered
期刊最新文献
C1orf115 interacts with clathrin adaptors to undergo endocytosis and induces ABCA1 to promote enteric cholesterol efflux. Synergistic combination of orally available safe-in-man pleconaril, AG7404, and mindeudesivir inhibits enterovirus infections in human cell and organoid cultures. Activation and evasion of inflammasomes during viral and microbial infection. BRAT1 - a new therapeutic target for glioblastoma. Cytoophidium complexes resonate with cell fates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1