A rapid identification system for vaginal fluid stains based on nested recombinant polymerase amplification and lateral flow dipstick.

IF 2.2 3区 医学 Q1 MEDICINE, LEGAL International Journal of Legal Medicine Pub Date : 2024-12-11 DOI:10.1007/s00414-024-03392-z
Bin Liang, Chudong Wang, Weifeng Qu, Ruyi Xu, Yi Liu, Hongtao Jia, Xuan Tang, Siqi Chen, Xue Li, Yue Wang, Jienan Li, Ying Liu, Dan Wen, Lagabaiyila Zha
{"title":"A rapid identification system for vaginal fluid stains based on nested recombinant polymerase amplification and lateral flow dipstick.","authors":"Bin Liang, Chudong Wang, Weifeng Qu, Ruyi Xu, Yi Liu, Hongtao Jia, Xuan Tang, Siqi Chen, Xue Li, Yue Wang, Jienan Li, Ying Liu, Dan Wen, Lagabaiyila Zha","doi":"10.1007/s00414-024-03392-z","DOIUrl":null,"url":null,"abstract":"<p><p>In forensic practice, identifying the species of unknown bodily fluid stains can provide assistance in the qualitative analysis and investigation of cases, and vaginal fluid stains, as one of the common bodily fluid stains, are most commonly seen at the scene of sexual assault. At present, the commonly used vaginal peptidase or microscopic detection methods currently have drawbacks such as high false negative rates, poor sensitivity, and high requirements for sample integrity and background color. However, in forensic investigations, the test materials have specificity and scarcity, making it difficult to ensure their quantity and quality. Thus, in order to achieve rapid and sensitive detection of vaginal fluid stains, in this study, we combined nested PCR and isothermal amplification technology to construct a rapid detection system for suspicious vaginal fluid stains using lateral flow dipstick. This system achieves detection by detecting the specific marker microbial community Lactobacillus crispatus in vaginal fluid, and has a high sensitivity and accuracy, which can achieve detection at template quantities as low as 2.31 copies. More importantly, the system can achieve detection at a constant temperature of 37 °C without the need for complex instruments. It can provide rapid and sensitive identification results, providing assistance for subsequent forensic material extraction and individual identification.</p>","PeriodicalId":14071,"journal":{"name":"International Journal of Legal Medicine","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Legal Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00414-024-03392-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
引用次数: 0

Abstract

In forensic practice, identifying the species of unknown bodily fluid stains can provide assistance in the qualitative analysis and investigation of cases, and vaginal fluid stains, as one of the common bodily fluid stains, are most commonly seen at the scene of sexual assault. At present, the commonly used vaginal peptidase or microscopic detection methods currently have drawbacks such as high false negative rates, poor sensitivity, and high requirements for sample integrity and background color. However, in forensic investigations, the test materials have specificity and scarcity, making it difficult to ensure their quantity and quality. Thus, in order to achieve rapid and sensitive detection of vaginal fluid stains, in this study, we combined nested PCR and isothermal amplification technology to construct a rapid detection system for suspicious vaginal fluid stains using lateral flow dipstick. This system achieves detection by detecting the specific marker microbial community Lactobacillus crispatus in vaginal fluid, and has a high sensitivity and accuracy, which can achieve detection at template quantities as low as 2.31 copies. More importantly, the system can achieve detection at a constant temperature of 37 °C without the need for complex instruments. It can provide rapid and sensitive identification results, providing assistance for subsequent forensic material extraction and individual identification.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
9.50%
发文量
165
审稿时长
1 months
期刊介绍: The International Journal of Legal Medicine aims to improve the scientific resources used in the elucidation of crime and related forensic applications at a high level of evidential proof. The journal offers review articles tracing development in specific areas, with up-to-date analysis; original articles discussing significant recent research results; case reports describing interesting and exceptional examples; population data; letters to the editors; and technical notes, which appear in a section originally created for rapid publication of data in the dynamic field of DNA analysis.
期刊最新文献
Exploring radiomic features of lateral cerebral ventricles in postmortem CT for postmortem interval estimation. Fluorescence of various buried fresh and fresh-frozen-thawed tissue types up until the point of active decay: a human taphonomy study. Exploration and application of microorganisms related to the inference of the time since deposition (TsD) in semen and blood stains. Construction of the time since deposition (TsD) model in saliva stains with 16S rRNA full-length sequencing technology and microbial markers. Expression of RIPK-1 and S-100B in traumatic brain injury- exploring a forensic cases series.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1