Description of mitochondrial genomes and phylogenetic analysis of Megophthalminae (Hemiptera: Cicadellidae).

IF 2.1 3区 农林科学 Q1 ENTOMOLOGY Journal of Insect Science Pub Date : 2024-11-01 DOI:10.1093/jisesa/ieae109
Mingming Sun, Jiajia Wang, Guy Smagghe, RenHuai Dai, Xianyi Wang, Yanqiong Yang, Min Li, Siying You
{"title":"Description of mitochondrial genomes and phylogenetic analysis of Megophthalminae (Hemiptera: Cicadellidae).","authors":"Mingming Sun, Jiajia Wang, Guy Smagghe, RenHuai Dai, Xianyi Wang, Yanqiong Yang, Min Li, Siying You","doi":"10.1093/jisesa/ieae109","DOIUrl":null,"url":null,"abstract":"<p><p>To elucidate phylogenetic relationships within the leafhopper's subfamily Megophthalminae (Hemiptera: Cicadellidae), mitogenomes of 12 species of the subfamily were sequenced and assembled. These were added to the mitogenomes of the eight other species that are currently available. Mitogenome size ranged from 15,193 bp in Onukigallia onukii (Matsumura, 1912) to 15,986 bp in Multinervis guangxiensis (Li and Li, 2013), they all contained 37 genes, and gene order was similar to that in other leafhoppers. Nucleotide composition analysis showed that the AT content was higher than that of GC, and the protein-coding genes usually ended with A/T at the 3rd codon position. The Ka/Ks ratio showed that the CYTB gene has the slowest evolutionary rate, while ND4 is the gene with the fastest evolutionary rate. Relative synonymous codon usage analysis revealed the most frequently used codon was UUA (L), followed by CGA (R), and the least frequently used codon was CCG (P). Parity plot and neutrality plot analyses showed that the codon usage bias of mitochondrial genes was influenced by natural selection and mutation pressure. However, natural selection plays a major role, while the effect of mutation pressure was small. Effective number of codons values were 40.15-49.17, which represented relatively low codon bias. Phylogenetic analyses based on three datasets (AA, 13PCG, 13PCG_2rRNA) using two methods (maximum likelihood and Bayesian inference). In the obtained topology, the Megophthalminae species were clustered into a monophyletic group. In conclusion, our results clarify structural modules of the mitochondrial genes and confirm the monophyly of Megophthalminae within Cicadellidae.</p>","PeriodicalId":16156,"journal":{"name":"Journal of Insect Science","volume":"24 6","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631095/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/jisesa/ieae109","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

To elucidate phylogenetic relationships within the leafhopper's subfamily Megophthalminae (Hemiptera: Cicadellidae), mitogenomes of 12 species of the subfamily were sequenced and assembled. These were added to the mitogenomes of the eight other species that are currently available. Mitogenome size ranged from 15,193 bp in Onukigallia onukii (Matsumura, 1912) to 15,986 bp in Multinervis guangxiensis (Li and Li, 2013), they all contained 37 genes, and gene order was similar to that in other leafhoppers. Nucleotide composition analysis showed that the AT content was higher than that of GC, and the protein-coding genes usually ended with A/T at the 3rd codon position. The Ka/Ks ratio showed that the CYTB gene has the slowest evolutionary rate, while ND4 is the gene with the fastest evolutionary rate. Relative synonymous codon usage analysis revealed the most frequently used codon was UUA (L), followed by CGA (R), and the least frequently used codon was CCG (P). Parity plot and neutrality plot analyses showed that the codon usage bias of mitochondrial genes was influenced by natural selection and mutation pressure. However, natural selection plays a major role, while the effect of mutation pressure was small. Effective number of codons values were 40.15-49.17, which represented relatively low codon bias. Phylogenetic analyses based on three datasets (AA, 13PCG, 13PCG_2rRNA) using two methods (maximum likelihood and Bayesian inference). In the obtained topology, the Megophthalminae species were clustered into a monophyletic group. In conclusion, our results clarify structural modules of the mitochondrial genes and confirm the monophyly of Megophthalminae within Cicadellidae.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大眼蝇科线粒体基因组描述及系统发育分析。
为了阐明大叶蝉亚科(半翅目:大叶蝉科)的系统发育关系,对该亚科12种的有丝分裂基因组进行了测序和组装。这些被添加到目前可用的其他八个物种的有丝分裂基因组中。有丝分裂基因组大小从Onukigallia onukii (Matsumura, 1912)的15,193 bp到guangxiensis (Li and Li, 2013)的15,986 bp不等,均含有37个基因,基因顺序与其他叶蝉相似。核苷酸组成分析表明,AT含量高于GC含量,蛋白质编码基因通常以A/T结束于第3密码子位置。Ka/Ks比值表明,CYTB基因进化速度最慢,ND4是进化速度最快的基因。相对同义密码子使用分析显示,使用频率最高的密码子是UUA (L),其次是CGA (R),使用频率最低的是CCG (P)。奇偶图和中性图分析表明,线粒体基因密码子使用偏差受自然选择和突变压力的影响。然而,自然选择起主要作用,突变压力的影响较小。有效密码子数为40.15 ~ 49.17,密码子偏倚较低。基于AA、13PCG、13PCG_2rRNA三个数据集的系统发育分析,采用最大似然和贝叶斯推理两种方法。在获得的拓扑结构中,Megophthalminae物种聚集成一个单系群。总之,我们的研究结果阐明了线粒体基因的结构模块,并证实了巨眼蝇属蝉科的单系性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Insect Science
Journal of Insect Science 生物-昆虫学
CiteScore
3.70
自引率
0.00%
发文量
80
审稿时长
7.5 months
期刊介绍: The Journal of Insect Science was founded with support from the University of Arizona library in 2001 by Dr. Henry Hagedorn, who served as editor-in-chief until his death in January 2014. The Entomological Society of America was very pleased to add the Journal of Insect Science to its publishing portfolio in 2014. The fully open access journal publishes papers in all aspects of the biology of insects and other arthropods from the molecular to the ecological, and their agricultural and medical impact.
期刊最新文献
A female sterilization method for use in field-based behavioral studies of the invasive Asian longhorned beetle (Anoplophora glabripennis). Host range of the oothecal parasitoid Aprostocetus hagenowii (Hymenoptera: Eulophidae). Host size overrides maternal effects on the development of a secondary hyperparasitoid wasp. Moth caterpillar embryos and parasitoid egg infection as revealed in vivo and visualized by micro-CT scanning. Measuring the effect of RFID and marker recognition tags on cockroach (Blattodea: Blaberidae) behavior using AI-aided tracking.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1