AI and ML-based risk assessment of chemicals: predicting carcinogenic risk from chemical-induced genomic instability.

IF 4.6 Q2 TOXICOLOGY Frontiers in toxicology Pub Date : 2024-11-26 eCollection Date: 2024-01-01 DOI:10.3389/ftox.2024.1461587
Ajay Vikram Singh, Preeti Bhardwaj, Peter Laux, Prachi Pradeep, Madleen Busse, Andreas Luch, Akihiko Hirose, Christopher J Osgood, Michael W Stacey
{"title":"AI and ML-based risk assessment of chemicals: predicting carcinogenic risk from chemical-induced genomic instability.","authors":"Ajay Vikram Singh, Preeti Bhardwaj, Peter Laux, Prachi Pradeep, Madleen Busse, Andreas Luch, Akihiko Hirose, Christopher J Osgood, Michael W Stacey","doi":"10.3389/ftox.2024.1461587","DOIUrl":null,"url":null,"abstract":"<p><p>Chemical risk assessment plays a pivotal role in safeguarding public health and environmental safety by evaluating the potential hazards and risks associated with chemical exposures. In recent years, the convergence of artificial intelligence (AI), machine learning (ML), and omics technologies has revolutionized the field of chemical risk assessment, offering new insights into toxicity mechanisms, predictive modeling, and risk management strategies. This perspective review explores the synergistic potential of AI/ML and omics in deciphering clastogen-induced genomic instability for carcinogenic risk prediction. We provide an overview of key findings, challenges, and opportunities in integrating AI/ML and omics technologies for chemical risk assessment, highlighting successful applications and case studies across diverse sectors. From predicting genotoxicity and mutagenicity to elucidating molecular pathways underlying carcinogenesis, integrative approaches offer a comprehensive framework for understanding chemical exposures and mitigating associated health risks. Future perspectives for advancing chemical risk assessment and cancer prevention through data integration, advanced machine learning techniques, translational research, and policy implementation are discussed. By implementing the predictive capabilities of AI/ML and omics technologies, researchers and policymakers can enhance public health protection, inform regulatory decisions, and promote sustainable development for a healthier future.</p>","PeriodicalId":73111,"journal":{"name":"Frontiers in toxicology","volume":"6 ","pages":"1461587"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11628524/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/ftox.2024.1461587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chemical risk assessment plays a pivotal role in safeguarding public health and environmental safety by evaluating the potential hazards and risks associated with chemical exposures. In recent years, the convergence of artificial intelligence (AI), machine learning (ML), and omics technologies has revolutionized the field of chemical risk assessment, offering new insights into toxicity mechanisms, predictive modeling, and risk management strategies. This perspective review explores the synergistic potential of AI/ML and omics in deciphering clastogen-induced genomic instability for carcinogenic risk prediction. We provide an overview of key findings, challenges, and opportunities in integrating AI/ML and omics technologies for chemical risk assessment, highlighting successful applications and case studies across diverse sectors. From predicting genotoxicity and mutagenicity to elucidating molecular pathways underlying carcinogenesis, integrative approaches offer a comprehensive framework for understanding chemical exposures and mitigating associated health risks. Future perspectives for advancing chemical risk assessment and cancer prevention through data integration, advanced machine learning techniques, translational research, and policy implementation are discussed. By implementing the predictive capabilities of AI/ML and omics technologies, researchers and policymakers can enhance public health protection, inform regulatory decisions, and promote sustainable development for a healthier future.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于AI和ml的化学品风险评估:预测化学品诱导的基因组不稳定性的致癌风险。
化学品风险评估通过评价与化学品接触有关的潜在危害和风险,在保障公众健康和环境安全方面发挥着关键作用。近年来,人工智能(AI)、机器学习(ML)和组学技术的融合彻底改变了化学品风险评估领域,为毒性机制、预测建模和风险管理策略提供了新的见解。这篇前瞻性综述探讨了AI/ML和组学在破译破胚原诱导的基因组不稳定性以预测致癌风险方面的协同潜力。我们概述了将AI/ML和组学技术整合到化学品风险评估中的主要发现、挑战和机遇,重点介绍了不同行业的成功应用和案例研究。从预测遗传毒性和致突变性到阐明致癌的分子途径,综合方法为了解化学品暴露和减轻相关健康风险提供了一个全面的框架。讨论了通过数据集成、先进机器学习技术、转化研究和政策实施来推进化学品风险评估和癌症预防的未来前景。通过实施人工智能/机器学习和组学技术的预测能力,研究人员和政策制定者可以加强公共卫生保护,为监管决策提供信息,并促进可持续发展,实现更健康的未来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Addressing animal methods bias through government-led initiatives. Nicotine-free electronic vape fluid stimulates angiogenic processes in vitro through ARF6-mediated oxidative stress. The lack of efficacy of tirzepatide in mitigating cisplatin-induced neurotoxicity and cognitive impairment in rats. Testicular mitochondrial redox imbalance and impaired oxidative phosphorylation underlie microplastic-induced testicular dysfunction in Wistar rats. A user-informed perspective of the toxicological data gap in India's cannabis landscape.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1