Branched-chain amino acids deficiency promotes diabetic cardiomyopathy by activating autophagy of cardiac fibroblasts.

IF 13.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Theranostics Pub Date : 2024-10-28 eCollection Date: 2024-01-01 DOI:10.7150/thno.102708
Ze-Yu Zhou, Kai Song, Zhi-Yan Liu, Yu-Fan Ke, Yan Shi, Ke Cai, Rui Zhao, Xin Sun, Hui Tao, Jian-Yuan Zhao
{"title":"Branched-chain amino acids deficiency promotes diabetic cardiomyopathy by activating autophagy of cardiac fibroblasts.","authors":"Ze-Yu Zhou, Kai Song, Zhi-Yan Liu, Yu-Fan Ke, Yan Shi, Ke Cai, Rui Zhao, Xin Sun, Hui Tao, Jian-Yuan Zhao","doi":"10.7150/thno.102708","DOIUrl":null,"url":null,"abstract":"<p><p><b>Rationale:</b> More than half of the patients with type II diabetes mellitus (T2D) develop diabetic cardiomyopathy (DCM). Glycemic control alone cannot effectively prevent or alleviate DCM. <b>Methods:</b> Herein, we concentrated on the variations in levels of metabolites between DCM and T2D patients without cardiomyopathy phenotype. In high-fat diet/low-dose streptozotocin-induced T2D and leptin receptor-deficient diabetic mouse models, we investigated the effect of altering branched-chain amino acids (BCAAs) levels on DCM. <b>Results:</b> We discovered that the levels of plasma BCAAs are notably lower in 15 DCM patients compared to 19 T2D patients who do not exhibit cardiomyopathy phenotype, using nuclear magnetic resonance analysis. This finding was further validated in two additional batches of samples, 123 DCM patients and 129 T2D patients based on the BCAA assay kit, and 30 DCM patients and 30 T2D patients based on the LC-MS/MS method, respectively. Moreover, it is verified that BCAA deficiency aggravated, whereas BCAA supplementation alleviated cardiomyopathy phenotypes in diabetic mice. Furthermore, BCAA deficiency promoted cardiac fibroblast activation by stimulating autophagy in DCM mice. Mechanistically, BCAA deficiency activated autophagy via the AMPK-ULK1 signaling pathway in cardiac fibroblasts. Using pharmacological approaches, we validated our findings that autophagy inhibition relieved, whereas autophagy activation aggravated, DCM phenotypes. <b>Conclusions:</b> Taken together, we describe a novel perspective wherein BCAA supplementation may serve as a potential therapeutic agent to mitigate DCM and fibrosis. Our findings provide insights for the development of preventive measures for DCM.</p>","PeriodicalId":22932,"journal":{"name":"Theranostics","volume":"14 19","pages":"7333-7348"},"PeriodicalIF":13.3000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11626946/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theranostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.7150/thno.102708","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Rationale: More than half of the patients with type II diabetes mellitus (T2D) develop diabetic cardiomyopathy (DCM). Glycemic control alone cannot effectively prevent or alleviate DCM. Methods: Herein, we concentrated on the variations in levels of metabolites between DCM and T2D patients without cardiomyopathy phenotype. In high-fat diet/low-dose streptozotocin-induced T2D and leptin receptor-deficient diabetic mouse models, we investigated the effect of altering branched-chain amino acids (BCAAs) levels on DCM. Results: We discovered that the levels of plasma BCAAs are notably lower in 15 DCM patients compared to 19 T2D patients who do not exhibit cardiomyopathy phenotype, using nuclear magnetic resonance analysis. This finding was further validated in two additional batches of samples, 123 DCM patients and 129 T2D patients based on the BCAA assay kit, and 30 DCM patients and 30 T2D patients based on the LC-MS/MS method, respectively. Moreover, it is verified that BCAA deficiency aggravated, whereas BCAA supplementation alleviated cardiomyopathy phenotypes in diabetic mice. Furthermore, BCAA deficiency promoted cardiac fibroblast activation by stimulating autophagy in DCM mice. Mechanistically, BCAA deficiency activated autophagy via the AMPK-ULK1 signaling pathway in cardiac fibroblasts. Using pharmacological approaches, we validated our findings that autophagy inhibition relieved, whereas autophagy activation aggravated, DCM phenotypes. Conclusions: Taken together, we describe a novel perspective wherein BCAA supplementation may serve as a potential therapeutic agent to mitigate DCM and fibrosis. Our findings provide insights for the development of preventive measures for DCM.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
支链氨基酸缺乏通过激活心肌成纤维细胞自噬促进糖尿病性心肌病。
理由:超过一半的2型糖尿病(T2D)患者发展为糖尿病性心肌病(DCM)。单独控制血糖不能有效预防或缓解DCM。方法:在此,我们集中研究无心肌病表型的DCM和T2D患者之间代谢物水平的变化。在高脂肪饮食/低剂量链脲佐菌素诱导的T2D和瘦素受体缺陷糖尿病小鼠模型中,我们研究了改变支链氨基酸(BCAAs)水平对DCM的影响。结果:通过核磁共振分析,我们发现15例DCM患者的血浆BCAAs水平明显低于19例未表现出心肌病表型的T2D患者。这一发现在另外两批样本中得到进一步验证,分别是基于BCAA检测试剂盒的123例DCM患者和129例T2D患者,以及基于LC-MS/MS方法的30例DCM患者和30例T2D患者。此外,研究证实BCAA缺乏会加重糖尿病小鼠的心肌病表型,而补充BCAA则会减轻心肌病表型。此外,BCAA缺乏通过刺激DCM小鼠的自噬来促进心肌成纤维细胞的活化。在机制上,BCAA缺乏通过AMPK-ULK1信号通路激活心脏成纤维细胞的自噬。使用药理学方法,我们验证了我们的发现,即自噬抑制减轻,而自噬激活加剧了DCM表型。结论:综上所述,我们描述了一种新的观点,其中补充BCAA可能作为一种潜在的治疗剂来减轻DCM和纤维化。我们的研究结果为DCM的预防措施的发展提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Theranostics
Theranostics MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
25.40
自引率
1.60%
发文量
433
审稿时长
1 months
期刊介绍: Theranostics serves as a pivotal platform for the exchange of clinical and scientific insights within the diagnostic and therapeutic molecular and nanomedicine community, along with allied professions engaged in integrating molecular imaging and therapy. As a multidisciplinary journal, Theranostics showcases innovative research articles spanning fields such as in vitro diagnostics and prognostics, in vivo molecular imaging, molecular therapeutics, image-guided therapy, biosensor technology, nanobiosensors, bioelectronics, system biology, translational medicine, point-of-care applications, and personalized medicine. Encouraging a broad spectrum of biomedical research with potential theranostic applications, the journal rigorously peer-reviews primary research, alongside publishing reviews, news, and commentary that aim to bridge the gap between the laboratory, clinic, and biotechnology industries.
期刊最新文献
Erratum: Mutation of SPINOPHILIN (PPP1R9B) found in human tumors promotes the tumorigenic and stemness properties of cells: Erratum. Cardiomyocyte-derived OTUD7B promotes cardiac hypertrophy by deubiquitinating SERCA2a. Epigenetic and O-glycosylation regulation of p66Shc mitigates mitochondrial oxidative stress in aortic dissection. MUC20 alleviates kidney fibrosis by modulating pyroptosis through the MET/RAS/STING axis. Histone H4K8 lactylation promotes glioblastoma progression by inducing NUPR1-mediated autophagosome‒lysosome fusion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1