Smart Polymer-Based Delivery Systems for Curcumin in Colon Cancer Therapy: A Review.

IF 6.1 2区 医学 Q1 CHEMISTRY, MEDICINAL Phytotherapy Research Pub Date : 2025-02-01 Epub Date: 2024-12-11 DOI:10.1002/ptr.8394
Adithya Jayaprakash Kamath, Asawari Dilip Donadkar, Bhagyalakshmi Nair, Ayana R Kumar, M Sabitha, Gautam Sethi, Abhay Singh Chauhan, Lekshmi R Nath
{"title":"Smart Polymer-Based Delivery Systems for Curcumin in Colon Cancer Therapy: A Review.","authors":"Adithya Jayaprakash Kamath, Asawari Dilip Donadkar, Bhagyalakshmi Nair, Ayana R Kumar, M Sabitha, Gautam Sethi, Abhay Singh Chauhan, Lekshmi R Nath","doi":"10.1002/ptr.8394","DOIUrl":null,"url":null,"abstract":"<p><p>Curcumin, a well-known bioactive component, has profound effects against colon cancer. However, the limitations are poor systemic absorption, off-target distribution, chemical instability, short half-life, and less concentration reaching tumor tissues. Several drug delivery systems have been evaluated so far to deliver effective concentrations of curcumin to the malignant tissues. This review aims to explore the role of smart polymers in overcoming limitations in curcumin delivery against colon cancer. Literature of the past 10 years was collected from Scopus, PubMed/Medline, Google Scholar, and Science Direct using specific keywords. Several preclinical and clinical studies of curcumin against colon cancer with the inclusion of smart polymers were screened using keywords like \"FDA-approved biomaterials,\" \"stimuli-responsive polymer,\" \"smart biomaterial,\" and so forth. Smart polymer phrase is used to describe all the mentioned polymers in the manuscript. Stimuli-responsive polymers, including poly-lactic-co-glycolic acid (PLGA), polyethylene glycol (PEG), Eudragit, cyclodextrin, and chitosan, have emerged as promising candidates for curcumin delivery against colon cancer. These polymers facilitate controlled drug release in response to stimuli such as temperature, pH, and enzymes, while offering biocompatibility, biodegradability, and safety. The five selected FDA-approved smart polymers exhibit the potential for enhancing curcumin delivery against colon cancer.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":" ","pages":"698-713"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytotherapy Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ptr.8394","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Curcumin, a well-known bioactive component, has profound effects against colon cancer. However, the limitations are poor systemic absorption, off-target distribution, chemical instability, short half-life, and less concentration reaching tumor tissues. Several drug delivery systems have been evaluated so far to deliver effective concentrations of curcumin to the malignant tissues. This review aims to explore the role of smart polymers in overcoming limitations in curcumin delivery against colon cancer. Literature of the past 10 years was collected from Scopus, PubMed/Medline, Google Scholar, and Science Direct using specific keywords. Several preclinical and clinical studies of curcumin against colon cancer with the inclusion of smart polymers were screened using keywords like "FDA-approved biomaterials," "stimuli-responsive polymer," "smart biomaterial," and so forth. Smart polymer phrase is used to describe all the mentioned polymers in the manuscript. Stimuli-responsive polymers, including poly-lactic-co-glycolic acid (PLGA), polyethylene glycol (PEG), Eudragit, cyclodextrin, and chitosan, have emerged as promising candidates for curcumin delivery against colon cancer. These polymers facilitate controlled drug release in response to stimuli such as temperature, pH, and enzymes, while offering biocompatibility, biodegradability, and safety. The five selected FDA-approved smart polymers exhibit the potential for enhancing curcumin delivery against colon cancer.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于聚合物的姜黄素智能递送系统在结肠癌治疗中的研究进展。
姜黄素是一种众所周知的生物活性成分,对结肠癌有深远的影响。然而,其局限性是全身吸收差、脱靶分布、化学不稳定、半衰期短、到达肿瘤组织的浓度少。到目前为止,已经对几种药物输送系统进行了评估,以将有效浓度的姜黄素输送到恶性组织。这篇综述的目的是探讨智能聚合物在克服姜黄素对结肠癌的递送限制中的作用。使用特定关键词从Scopus, PubMed/Medline,谷歌Scholar和Science Direct中收集了过去10年的文献。一些姜黄素抗结肠癌的临床前和临床研究使用“fda批准的生物材料”、“刺激反应聚合物”、“智能生物材料”等关键词进行筛选。智能聚合物短语用于描述手稿中提到的所有聚合物。刺激响应聚合物,包括聚乳酸-羟基乙酸(PLGA)、聚乙二醇(PEG)、芡实、环糊精和壳聚糖,已经成为姜黄素输送抗结肠癌的有希望的候选者。这些聚合物在温度、pH值和酶等刺激下促进药物释放,同时提供生物相容性、可生物降解性和安全性。这五种经fda批准的智能聚合物显示出增强姜黄素输送对抗结肠癌的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Phytotherapy Research
Phytotherapy Research 医学-药学
CiteScore
12.80
自引率
5.60%
发文量
325
审稿时长
2.6 months
期刊介绍: Phytotherapy Research is an internationally recognized pharmacological journal that serves as a trailblazing resource for biochemists, pharmacologists, and toxicologists. We strive to disseminate groundbreaking research on medicinal plants, pushing the boundaries of knowledge and understanding in this field. Our primary focus areas encompass pharmacology, toxicology, and the clinical applications of herbs and natural products in medicine. We actively encourage submissions on the effects of commonly consumed food ingredients and standardized plant extracts. We welcome a range of contributions including original research papers, review articles, and letters. By providing a platform for the latest developments and discoveries in phytotherapy, we aim to support the advancement of scientific knowledge and contribute to the improvement of modern medicine.
期刊最新文献
Angelica dahurica Polysaccharides Ameliorate Colitis by Reducing the Restriction of Gut Microbiota-Derived Imidazole Propionate on PPAR-γ Signaling Activation. Unraveling the Molecular Mechanisms of Osteoarthritis: The Potential of Polyphenols as Therapeutic Agents. Sinigrin Selectively Mitigates the Acute-Cardiac Inflammatory Response Through an AMPK-Dependent Mechanism. Gastrodin Ameliorates Tau Pathology and BBB Dysfunction in 3xTg-AD Transgenic Mice by Regulating the ADRA1/NF-κB/NLRP3 Pathway to Reduce Neuroinflammation. Multifaceted Therapeutic Impacts of Cucurbitacin B: Recent Evidences From Preclinical Studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1