Plant chemical diversity enhances defense against herbivory.

IF 9.1 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Proceedings of the National Academy of Sciences of the United States of America Pub Date : 2024-12-17 Epub Date: 2024-12-11 DOI:10.1073/pnas.2417524121
Xosé López-Goldar, Xuening Zhang, Amy P Hastings, Christophe Duplais, Anurag A Agrawal
{"title":"Plant chemical diversity enhances defense against herbivory.","authors":"Xosé López-Goldar, Xuening Zhang, Amy P Hastings, Christophe Duplais, Anurag A Agrawal","doi":"10.1073/pnas.2417524121","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple hypotheses have been put forth to understand why defense chemistry in individual plants is so diverse. A major challenge has been teasing apart the importance of concentration vs. composition of defense compounds and resolving the mechanisms of diversity effects that determine plant resistance against herbivores. Accordingly, we first outline nonexclusive mechanisms by which phytochemical diversity may increase toxicity of a mixture compared to the average effect of each compound alone. We then leveraged independent in vitro, in vivo transgenic, and organismal experiments to test the effect of equimolar concentrations of purified milkweed toxins in isolation vs. mixtures on the specialist and sequestering monarch butterfly. We show that cardenolide toxin mixtures from milkweed plants enhance resistance against this herbivore compared to equal concentrations of single compounds. In mixtures, highly potent toxins dominated the inhibition of the monarch's target enzyme (Na<sup>+</sup>/K<sup>+</sup>-ATPase) in vitro, revealing toxin-specific affinity for the adapted enzyme in the absence of other physiological adaptations of the monarch. Mixtures also caused increased mortality in CRISPR-edited adult <i>Drosophila melanogaster</i> with the monarch enzyme in vivo, whereas wild-type flies showed lower survival regardless of mixture type. Finally, although experimentally administered mixtures were not more toxic to monarch caterpillars than single compounds overall, increasing caterpillar sequestration from mixtures resulted in an increasing burden for growth compared to single compounds. Phytochemical diversity likely provides an economical plant defense by acting on multiple aspects of herbivore physiology and may be particularly effective against sequestering specialist herbivores.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"121 51","pages":"e2417524121"},"PeriodicalIF":9.1000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11665865/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2417524121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Multiple hypotheses have been put forth to understand why defense chemistry in individual plants is so diverse. A major challenge has been teasing apart the importance of concentration vs. composition of defense compounds and resolving the mechanisms of diversity effects that determine plant resistance against herbivores. Accordingly, we first outline nonexclusive mechanisms by which phytochemical diversity may increase toxicity of a mixture compared to the average effect of each compound alone. We then leveraged independent in vitro, in vivo transgenic, and organismal experiments to test the effect of equimolar concentrations of purified milkweed toxins in isolation vs. mixtures on the specialist and sequestering monarch butterfly. We show that cardenolide toxin mixtures from milkweed plants enhance resistance against this herbivore compared to equal concentrations of single compounds. In mixtures, highly potent toxins dominated the inhibition of the monarch's target enzyme (Na+/K+-ATPase) in vitro, revealing toxin-specific affinity for the adapted enzyme in the absence of other physiological adaptations of the monarch. Mixtures also caused increased mortality in CRISPR-edited adult Drosophila melanogaster with the monarch enzyme in vivo, whereas wild-type flies showed lower survival regardless of mixture type. Finally, although experimentally administered mixtures were not more toxic to monarch caterpillars than single compounds overall, increasing caterpillar sequestration from mixtures resulted in an increasing burden for growth compared to single compounds. Phytochemical diversity likely provides an economical plant defense by acting on multiple aspects of herbivore physiology and may be particularly effective against sequestering specialist herbivores.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
植物化学多样性增强了对食草动物的防御。
人们提出了多种假设来理解为什么单个植物的防御化学如此多样化。一个主要的挑战是梳理防御化合物的浓度与组成的重要性,并解决决定植物对食草动物抗性的多样性效应的机制。因此,我们首先概述了与每种化合物单独的平均作用相比,植物化学多样性可能增加混合物毒性的非排他性机制。然后,我们利用独立的体外、体内转基因和有机实验来测试等摩尔浓度的分离纯化马利筋毒素与混合物对专业和隔离帝王蝶的影响。我们表明,与相同浓度的单一化合物相比,来自马利筋植物的硬核内酯毒素混合物增强了对这种食草动物的抵抗力。在混合物中,强效毒素在体外抑制黑脉金斑蝶的靶酶(Na+/K+- atp酶)中占主导地位,揭示了在没有其他生理适应的情况下,毒素对适应酶的特异性亲和力。混合也导致体内含有黑脉金斑蝶酶的crispr编辑的成年黑腹果蝇死亡率增加,而无论混合类型如何,野生型果蝇的存活率都较低。最后,尽管实验中施用的混合物对黑脉金斑蝶的毒性总体上并不比单一化合物更大,但与单一化合物相比,混合物中增加的毛虫隔离导致生长负担增加。植物化学多样性可能通过作用于食草动物生理的多个方面提供了一种经济的植物防御,并且可能特别有效地隔离专门的食草动物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
期刊最新文献
A lectin receptor-like kinase controls self-pollen recognition in Phlox. Everyone wants something better than ΛCDM. Chen Ning "Frank" Yang (1922-2025): Profound proponent of symmetry. More than a blueprint: Developmental regulators secure the cellular environment for regeneration. Lipid landscaping of the bacterial cell surface.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1