Advancing hyperspectral imaging and machine learning tools toward clinical adoption in tissue diagnostics: A comprehensive review.

IF 6.6 3区 医学 Q1 ENGINEERING, BIOMEDICAL APL Bioengineering Pub Date : 2024-12-06 eCollection Date: 2024-12-01 DOI:10.1063/5.0240444
Chun-Liang Lai, Riya Karmakar, Arvind Mukundan, Ragul Kumar Natarajan, Song-Cun Lu, Cheng-Yi Wang, Hsiang-Chen Wang
{"title":"Advancing hyperspectral imaging and machine learning tools toward clinical adoption in tissue diagnostics: A comprehensive review.","authors":"Chun-Liang Lai, Riya Karmakar, Arvind Mukundan, Ragul Kumar Natarajan, Song-Cun Lu, Cheng-Yi Wang, Hsiang-Chen Wang","doi":"10.1063/5.0240444","DOIUrl":null,"url":null,"abstract":"<p><p>Hyperspectral imaging (HSI) has become an evident transformative apparatus in medical diagnostics. The review aims to appraise the present advancement and challenges in HSI for medical applications. It features a variety of medical applications namely diagnosing diabetic retinopathy, neurodegenerative diseases like Parkinson's and Alzheimer's, which illustrates its effectiveness in early diagnosis, early caries detection in periodontal disease, and dermatology by detecting skin cancer. Regardless of these advances, the challenges exist within every aspect that limits its broader clinical adoption. It has various constraints including difficulties with technology related to the complexity of the HSI system and needing specialist training, which may act as a drawback to its clinical settings. This article pertains to potential challenges expressed in medical applications and probable solutions to overcome these constraints. Successful companies that perform advanced solutions with HSI in terms of medical applications are being emphasized in this study to signal the high level of interest in medical diagnosis for systems to incorporate machine learning ML and artificial intelligence AI to foster precision diagnosis and standardized clinical workflow. This advancement signifies progressive possibilities of HSI in real-time clinical assessments. In conclusion despite HSI has been presented as a significant advanced medical imaging tool, addressing its limitations and probable solutions is for broader clinical adoption.</p>","PeriodicalId":46288,"journal":{"name":"APL Bioengineering","volume":"8 4","pages":"041504"},"PeriodicalIF":6.6000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11629177/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0240444","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hyperspectral imaging (HSI) has become an evident transformative apparatus in medical diagnostics. The review aims to appraise the present advancement and challenges in HSI for medical applications. It features a variety of medical applications namely diagnosing diabetic retinopathy, neurodegenerative diseases like Parkinson's and Alzheimer's, which illustrates its effectiveness in early diagnosis, early caries detection in periodontal disease, and dermatology by detecting skin cancer. Regardless of these advances, the challenges exist within every aspect that limits its broader clinical adoption. It has various constraints including difficulties with technology related to the complexity of the HSI system and needing specialist training, which may act as a drawback to its clinical settings. This article pertains to potential challenges expressed in medical applications and probable solutions to overcome these constraints. Successful companies that perform advanced solutions with HSI in terms of medical applications are being emphasized in this study to signal the high level of interest in medical diagnosis for systems to incorporate machine learning ML and artificial intelligence AI to foster precision diagnosis and standardized clinical workflow. This advancement signifies progressive possibilities of HSI in real-time clinical assessments. In conclusion despite HSI has been presented as a significant advanced medical imaging tool, addressing its limitations and probable solutions is for broader clinical adoption.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
APL Bioengineering
APL Bioengineering ENGINEERING, BIOMEDICAL-
CiteScore
9.30
自引率
6.70%
发文量
39
审稿时长
19 weeks
期刊介绍: APL Bioengineering is devoted to research at the intersection of biology, physics, and engineering. The journal publishes high-impact manuscripts specific to the understanding and advancement of physics and engineering of biological systems. APL Bioengineering is the new home for the bioengineering and biomedical research communities. APL Bioengineering publishes original research articles, reviews, and perspectives. Topical coverage includes: -Biofabrication and Bioprinting -Biomedical Materials, Sensors, and Imaging -Engineered Living Systems -Cell and Tissue Engineering -Regenerative Medicine -Molecular, Cell, and Tissue Biomechanics -Systems Biology and Computational Biology
期刊最新文献
Immunogenic cell death-related cancer-associated fibroblast clusters and prognostic risk model in cervical cancer. Advancing hyperspectral imaging and machine learning tools toward clinical adoption in tissue diagnostics: A comprehensive review. On-chip fabrication of tailored 3D hydrogel scaffolds to model cancer cell invasion and interaction with endothelial cells. Geometrically engineered organoid units and their assembly for pre-construction of organ structures. Stacking model framework reveals clinical biochemical data and dietary behavior features associated with type 2 diabetes: A retrospective cohort study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1