Keeping it in the family: using protein family templates to rescue low confidence AlphaFold2 models.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Bioinformatics advances Pub Date : 2024-11-25 eCollection Date: 2024-01-01 DOI:10.1093/bioadv/vbae188
Francesco Costa, Matthias Blum, Alex Bateman
{"title":"Keeping it in the family: using protein family templates to rescue low confidence AlphaFold2 models.","authors":"Francesco Costa, Matthias Blum, Alex Bateman","doi":"10.1093/bioadv/vbae188","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>High confidence structure prediction models have become available for nearly all protein sequences. More than 200 million AlphaFold2 models are now publicly available. We observe that there can be significant variability in the prediction confidence as judged by plDDT scores across a protein family. We have explored whether the predictions with lower plDDT in a family can be improved by the use of higher plDDT templates from the family as template structures in AlphaFold2.</p><p><strong>Results: </strong>Our work shows that about one-third of the time structures with a low plDDT can be \"rescued,\" moved from low to reasonable confidence. We also find that surprisingly in many cases we get a higher plDDT model when we switch off the multiple sequence alignment (MSA) option in AlphaFold2 and solely rely on a high-quality template. However, we find the best overall strategy is to make predictions both with and without the MSA information and select the model with the highest average plDDT. We also find that using high plDDT models as templates can increase the speed of AlphaFold2 as implemented in ColabFold. Additionally, we try to demonstrate that as well as having increased overall plDDT, the models are likely to have higher quality structures as judged by two metrics.</p><p><strong>Availability and implementation: </strong>We have implemented our pipeline in NextFlow and it is available in GitHub: https://github.com/FranceCosta/AF2Fix.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae188"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11630841/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: High confidence structure prediction models have become available for nearly all protein sequences. More than 200 million AlphaFold2 models are now publicly available. We observe that there can be significant variability in the prediction confidence as judged by plDDT scores across a protein family. We have explored whether the predictions with lower plDDT in a family can be improved by the use of higher plDDT templates from the family as template structures in AlphaFold2.

Results: Our work shows that about one-third of the time structures with a low plDDT can be "rescued," moved from low to reasonable confidence. We also find that surprisingly in many cases we get a higher plDDT model when we switch off the multiple sequence alignment (MSA) option in AlphaFold2 and solely rely on a high-quality template. However, we find the best overall strategy is to make predictions both with and without the MSA information and select the model with the highest average plDDT. We also find that using high plDDT models as templates can increase the speed of AlphaFold2 as implemented in ColabFold. Additionally, we try to demonstrate that as well as having increased overall plDDT, the models are likely to have higher quality structures as judged by two metrics.

Availability and implementation: We have implemented our pipeline in NextFlow and it is available in GitHub: https://github.com/FranceCosta/AF2Fix.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
Predicting CRISPR-Cas9 off-target effects in human primary cells using bidirectional LSTM with BERT embedding. Genal: a Python toolkit for genetic risk scoring and Mendelian randomization. QOMIC: quantum optimization for motif identification. SurfR: Riding the wave of RNA-seq data with a comprehensive bioconductor package to identify surface protein-coding genes. Exploring the role of the Rab network in epithelial-to-mesenchymal transition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1