SuperSpot: coarse graining spatial transcriptomics data into metaspots.

Matei Teleman, Aurélie A G Gabriel, Léonard Hérault, David Gfeller
{"title":"SuperSpot: coarse graining spatial transcriptomics data into metaspots.","authors":"Matei Teleman, Aurélie A G Gabriel, Léonard Hérault, David Gfeller","doi":"10.1093/bioinformatics/btae734","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>Spatial Transcriptomics is revolutionizing our ability to phenotypically characterize complex biological tissues and decipher cellular niches. With current technologies such as VisiumHD, thousands of genes can be detected across millions of spots (also called cells or bins depending on the technologies). Building upon the metacell concept, we present a workflow, called SuperSpot, to combine adjacent and transcriptomically similar spots into \"metaspots\". The process involves representing spots as nodes in a graph with edges connecting spots in spatial proximity and edge weights representing transcriptomic similarity. Hierarchical clustering is used to aggregate spots into metaspots at a user-defined resolution. We demonstrate that metaspots reduce the size and sparsity of spatial transcriptomic data and facilitate the analysis of large datasets generated with the most recent technologies.</p><p><strong>Availability and implementation: </strong>SuperSpot is an R package available at https://github.com/GfellerLab/SuperSpot and archived on Zenodo (https://doi.org/10.5281/zenodo.14222088). The code to reproduce the figures is available at https://github.com/GfellerLab/SuperSpot/tree/main/figures (https://doi.org/10.5281/zenodo.14222088).</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725322/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary: Spatial Transcriptomics is revolutionizing our ability to phenotypically characterize complex biological tissues and decipher cellular niches. With current technologies such as VisiumHD, thousands of genes can be detected across millions of spots (also called cells or bins depending on the technologies). Building upon the metacell concept, we present a workflow, called SuperSpot, to combine adjacent and transcriptomically similar spots into "metaspots". The process involves representing spots as nodes in a graph with edges connecting spots in spatial proximity and edge weights representing transcriptomic similarity. Hierarchical clustering is used to aggregate spots into metaspots at a user-defined resolution. We demonstrate that metaspots reduce the size and sparsity of spatial transcriptomic data and facilitate the analysis of large datasets generated with the most recent technologies.

Availability and implementation: SuperSpot is an R package available at https://github.com/GfellerLab/SuperSpot and archived on Zenodo (https://doi.org/10.5281/zenodo.14222088). The code to reproduce the figures is available at https://github.com/GfellerLab/SuperSpot/tree/main/figures (https://doi.org/10.5281/zenodo.14222088).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超级斑点:粗粒空间转录组学数据到转移斑点。
摘要:空间转录组学正在彻底改变我们对复杂生物组织进行表型表征和破译细胞生态位的能力。使用目前的技术,如VisiumHD,可以在数百万个点(也称为细胞或箱,取决于技术)中检测到数千个基因。在元细胞概念的基础上,我们提出了一个称为SuperSpot的工作流程,将相邻的和转录相似的点组合成“元点”。该过程包括将点表示为图中的节点,用空间接近的边连接点,边权重表示转录组相似性。分层聚类用于按用户定义的分辨率将点聚合为元点。我们证明,转移点减少了空间转录组数据的大小和稀疏性,并促进了用最新技术生成的大型数据集的分析。可用性和实现:SuperSpot是一个R包,可从https://github.com/GfellerLab/SuperSpot获得,并存档于Zenodo (https://doi.org/10.5281/zenodo.14222088)。复制这些数字的代码可在https://github.com/GfellerLab/SuperSpot/tree/main/figures (https://doi.org/10.5281/zenodo.14222088).Supplementary信息:补充数据可在Bioinformatics在线获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HTSinfer: Inferring metadata from bulk illumina RNA-Seq libraries. MOSTPLAS: A Self-correction Multi-label Learning Model for Plasmid Host Range Prediction. GCLink: a graph contrastive link prediction framework for gene regulatory network inference. PNL: a software to build polygenic risk scores using a Super Learner approach based on PairNet, a Convolutional Neural Network. TiltRec: An ultra-fast and open-source toolkit for cryo-electron tomographic reconstruction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1