Conformal Symplectic Optimization for Stable Reinforcement Learning

IF 8.9 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE transactions on neural networks and learning systems Pub Date : 2024-12-11 DOI:10.1109/TNNLS.2024.3511670
Yao Lyu;Xiangteng Zhang;Shengbo Eben Li;Jingliang Duan;Letian Tao;Qing Xu;Lei He;Keqiang Li
{"title":"Conformal Symplectic Optimization for Stable Reinforcement Learning","authors":"Yao Lyu;Xiangteng Zhang;Shengbo Eben Li;Jingliang Duan;Letian Tao;Qing Xu;Lei He;Keqiang Li","doi":"10.1109/TNNLS.2024.3511670","DOIUrl":null,"url":null,"abstract":"Training deep reinforcement learning (RL) agents necessitates overcoming the highly unstable nonconvex stochastic optimization inherent in the trial-and-error mechanism. To tackle this challenge, we propose a physics-inspired optimization algorithm called relativistic adaptive gradient descent (RAD), which enhances long-term training stability. By conceptualizing neural network (NN) training as the evolution of a conformal Hamiltonian system, we present a universal framework for transferring long-term stability from conformal symplectic integrators to iterative NN updating rules, where the choice of kinetic energy governs the dynamical properties of resulting optimization algorithms. By utilizing relativistic kinetic energy, RAD incorporates principles from special relativity and limits parameter updates below a finite speed, effectively mitigating abnormal gradient influences. In addition, RAD models NN optimization as the evolution of a multiparticle system where each trainable parameter acts as an independent particle with an individual adaptive learning rate. We prove RAD’s sublinear convergence under general nonconvex settings, where smaller gradient variance and larger batch sizes contribute to tighter convergence. Notably, RAD degrades to the well-known adaptive moment estimation (ADAM) algorithm when its speed coefficient is chosen as one and symplectic factor as a small positive value. Experimental results show RAD outperforming nine baseline optimizers with five RL algorithms across twelve environments, including standard benchmarks and challenging scenarios. Notably, RAD achieves up to a 155.1% performance improvement over ADAM in Atari games, showcasing its efficacy in stabilizing and accelerating RL training.","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":"36 6","pages":"11049-11063"},"PeriodicalIF":8.9000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks and learning systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10792938/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Training deep reinforcement learning (RL) agents necessitates overcoming the highly unstable nonconvex stochastic optimization inherent in the trial-and-error mechanism. To tackle this challenge, we propose a physics-inspired optimization algorithm called relativistic adaptive gradient descent (RAD), which enhances long-term training stability. By conceptualizing neural network (NN) training as the evolution of a conformal Hamiltonian system, we present a universal framework for transferring long-term stability from conformal symplectic integrators to iterative NN updating rules, where the choice of kinetic energy governs the dynamical properties of resulting optimization algorithms. By utilizing relativistic kinetic energy, RAD incorporates principles from special relativity and limits parameter updates below a finite speed, effectively mitigating abnormal gradient influences. In addition, RAD models NN optimization as the evolution of a multiparticle system where each trainable parameter acts as an independent particle with an individual adaptive learning rate. We prove RAD’s sublinear convergence under general nonconvex settings, where smaller gradient variance and larger batch sizes contribute to tighter convergence. Notably, RAD degrades to the well-known adaptive moment estimation (ADAM) algorithm when its speed coefficient is chosen as one and symplectic factor as a small positive value. Experimental results show RAD outperforming nine baseline optimizers with five RL algorithms across twelve environments, including standard benchmarks and challenging scenarios. Notably, RAD achieves up to a 155.1% performance improvement over ADAM in Atari games, showcasing its efficacy in stabilizing and accelerating RL training.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稳定强化学习的保形辛优化
训练深度强化学习(RL)智能体需要克服在试错机制中固有的高度不稳定的非凸随机优化。为了解决这一挑战,我们提出了一种物理启发的优化算法,称为相对论自适应梯度下降(RAD),它提高了长期训练的稳定性。通过将神经网络(NN)训练概念化为共形哈密顿系统的演化,我们提出了一个将长期稳定性从共形辛积分器转移到迭代NN更新规则的通用框架,其中动能的选择控制了所得到的优化算法的动态特性。通过利用相对论动能,RAD结合了狭义相对论的原理,并将参数更新限制在有限速度以下,有效减轻了异常梯度的影响。此外,RAD将神经网络优化建模为多粒子系统的演化,其中每个可训练参数作为具有个体自适应学习率的独立粒子。我们证明了RAD在一般非凸设置下的次线性收敛性,其中较小的梯度方差和较大的批大小有助于更紧密的收敛。值得注意的是,当RAD的速度系数为1,辛因子为一个小正值时,RAD退化为众所周知的自适应矩估计(ADAM)算法。实验结果表明,在包括标准基准测试和具有挑战性的场景在内的12种环境中,RAD优于5种RL算法的9种基线优化器。值得注意的是,在雅达利游戏中,RAD比ADAM的性能提高了155.1%,显示了它在稳定和加速RL训练方面的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE transactions on neural networks and learning systems
IEEE transactions on neural networks and learning systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
CiteScore
23.80
自引率
9.60%
发文量
2102
审稿时长
3-8 weeks
期刊介绍: The focus of IEEE Transactions on Neural Networks and Learning Systems is to present scholarly articles discussing the theory, design, and applications of neural networks as well as other learning systems. The journal primarily highlights technical and scientific research in this domain.
期刊最新文献
Neural-Adaptive Finite-Time Consensus Tracking of Singular Multiagent Systems With Actuator Attack Class-Incremental Cloud-Device Collaborative Adaptation With Contrastive Learning in Dynamic Changing Environments. ATTE: An Innovative Ensemble Learning Method With Age-Group-Guided Fine-Tuning for Improving Personalized Blood Pressure Estimation Resource-Efficient and Layer Interdependence-Aware CNN Pruning Leveraging Filter Replacement. Logits-Level Balanced Machine Unlearning for LLM-Based Recommendation System.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1