Evo learns biological complexity from the molecular to genome scale

IF 33.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Nature biotechnology Pub Date : 2024-12-11 DOI:10.1038/s41587-024-02514-7
Iris Marchal
{"title":"Evo learns biological complexity from the molecular to genome scale","authors":"Iris Marchal","doi":"10.1038/s41587-024-02514-7","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":19084,"journal":{"name":"Nature biotechnology","volume":"42 12","pages":"1793-1793"},"PeriodicalIF":33.1000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41587-024-02514-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超能力从分子到基因组级别学习生物复杂性
分子生物学的生成式人工智能模型通常局限于单个分子或DNA片段,并且在应用于长序列时,其构建方式使得它们的计算要求很高。捕捉更广泛的基因组相互作用的能力对于理解和设计复杂的生物过程至关重要。Nguyen等人在《科学》杂志上撰文介绍了Evo,这是一种基因组基础模型,可以在保持单核苷酸分辨率的情况下,在全基因组规模上解释和生成DNA序列。Evo建立在StripedHyena架构上,配备了70亿个参数,上下文长度高达131千碱基。经过270万个微生物基因组的训练,Evo在以前使用特定领域模型执行的各种任务上表现良好。例如,Evo了解了突变对蛋白质和非编码RNA功能的影响,模拟了调控元件的活性,并通过预测基因的必要性了解了小突变如何影响生物体的适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature biotechnology
Nature biotechnology 工程技术-生物工程与应用微生物
CiteScore
63.00
自引率
1.70%
发文量
382
审稿时长
3 months
期刊介绍: Nature Biotechnology is a monthly journal that focuses on the science and business of biotechnology. It covers a wide range of topics including technology/methodology advancements in the biological, biomedical, agricultural, and environmental sciences. The journal also explores the commercial, political, ethical, legal, and societal aspects of this research. The journal serves researchers by providing peer-reviewed research papers in the field of biotechnology. It also serves the business community by delivering news about research developments. This approach ensures that both the scientific and business communities are well-informed and able to stay up-to-date on the latest advancements and opportunities in the field. Some key areas of interest in which the journal actively seeks research papers include molecular engineering of nucleic acids and proteins, molecular therapy, large-scale biology, computational biology, regenerative medicine, imaging technology, analytical biotechnology, applied immunology, food and agricultural biotechnology, and environmental biotechnology. In summary, Nature Biotechnology is a comprehensive journal that covers both the scientific and business aspects of biotechnology. It strives to provide researchers with valuable research papers and news while also delivering important scientific advancements to the business community.
期刊最新文献
A ‘CRISPR’ way to visualize RNA in live cells Single-molecule live-cell RNA imaging with CRISPR–Csm Sustained in situ protein production and release in the mammalian gut by an engineered bacteriophage The reverse transcriptase domain of prime editors contributes to DNA repair in mammalian cells Vertex’s opioid-free drug for acute pain wins FDA approval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1