Research on Early Three-Core Power Cable High-Impedance Fault Location Method Based on the Spectrum of Propagation Functions

IF 3.7 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Power Delivery Pub Date : 2024-12-11 DOI:10.1109/TPWRD.2024.3516122
Chunqi Liu;Dongsheng Chen;Yimin Hou
{"title":"Research on Early Three-Core Power Cable High-Impedance Fault Location Method Based on the Spectrum of Propagation Functions","authors":"Chunqi Liu;Dongsheng Chen;Yimin Hou","doi":"10.1109/TPWRD.2024.3516122","DOIUrl":null,"url":null,"abstract":"High-impedance faults in three-core power cables gradually develop into serious faults. Hence, localizing high-impedance faults is the key to ensuring transmission line reliability. The fault location cannot be accurately located due to the low detection sensitivity of the time-domain reflection (TDR) method and interference peaks in the localization results of the frequency-domain reflection (FDR) method. A new spectrum of propagation function (SPF) based fault localization method is proposed in this paper. Cable's S-parameter model is first described to reveal the reason for the change in the resonant frequency in the SPF due to high-impedance faults. In addition, the integral transform algorithm is employed to extract the cable's fault location from the SPF; the method's feasibility is numerically verified. Finally, high-impedance faults are set up in a three-core cable of 100 m in length, and the SPF of the cable is measured via a vector network analyzer. Compared with the TDR and FDR methods, the proposed approach is more capable of identifying high-impedance faults and more dependable on localization results. The fault localization error is within 0.16%, which has good application value.","PeriodicalId":13498,"journal":{"name":"IEEE Transactions on Power Delivery","volume":"40 1","pages":"630-640"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Power Delivery","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10794539/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

High-impedance faults in three-core power cables gradually develop into serious faults. Hence, localizing high-impedance faults is the key to ensuring transmission line reliability. The fault location cannot be accurately located due to the low detection sensitivity of the time-domain reflection (TDR) method and interference peaks in the localization results of the frequency-domain reflection (FDR) method. A new spectrum of propagation function (SPF) based fault localization method is proposed in this paper. Cable's S-parameter model is first described to reveal the reason for the change in the resonant frequency in the SPF due to high-impedance faults. In addition, the integral transform algorithm is employed to extract the cable's fault location from the SPF; the method's feasibility is numerically verified. Finally, high-impedance faults are set up in a three-core cable of 100 m in length, and the SPF of the cable is measured via a vector network analyzer. Compared with the TDR and FDR methods, the proposed approach is more capable of identifying high-impedance faults and more dependable on localization results. The fault localization error is within 0.16%, which has good application value.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于传播函数谱的早期三芯电力电缆高阻抗故障定位方法研究
三芯电力电缆的高阻抗故障逐渐发展为严重故障。因此,高阻抗故障的定位是保证输电线路可靠性的关键。由于时域反射法(TDR)检测灵敏度低,频域反射法(FDR)定位结果中存在干扰峰,无法准确定位故障。提出了一种新的基于传播函数谱(SPF)的故障定位方法。首先描述电缆的s参数模型,揭示高阻抗故障导致SPF内谐振频率变化的原因。此外,采用积分变换算法从SPF中提取电缆的故障位置;数值验证了该方法的可行性。最后,在长度为100m的三芯电缆中设置高阻抗故障,并通过矢量网络分析仪测量电缆的SPF。与TDR和FDR方法相比,该方法识别高阻抗故障的能力更强,定位结果更可靠。故障定位误差在0.16%以内,具有较好的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Power Delivery
IEEE Transactions on Power Delivery 工程技术-工程:电子与电气
CiteScore
9.00
自引率
13.60%
发文量
513
审稿时长
6 months
期刊介绍: The scope of the Society embraces planning, research, development, design, application, construction, installation and operation of apparatus, equipment, structures, materials and systems for the safe, reliable and economic generation, transmission, distribution, conversion, measurement and control of electric energy. It includes the developing of engineering standards, the providing of information and instruction to the public and to legislators, as well as technical scientific, literary, educational and other activities that contribute to the electric power discipline or utilize the techniques or products within this discipline.
期刊最新文献
Galloping Detection for AC Overhead Transmission Line Based on Induced Signals in Ground Wires High-Frequency Resonance Suppression of MMC-HVDC Based on the Coordination of Voltage Feedforward Filtering and Passive Damping Research on Infeeder Line Protection Scheme for Traction Substation under Bilateral Power Supply Mode Self-Adaptive Physics-Informed Neural Network for Power Transformer Insulation Paper Degradation Based on Emsley's Model Influence of Loaded Power Cable Cyclic Transversal Bending on Trend Evolution of Dielectric Loss and Partial Discharges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1