On the overlap reduction function of pulsar timing array searches for gravitational waves in modified gravity

IF 3.6 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Classical and Quantum Gravity Pub Date : 2024-12-12 DOI:10.1088/1361-6382/ad9881
Nina Cordes, Andrea Mitridate, Kai Schmitz, Tobias Schröder and Kim Wassner
{"title":"On the overlap reduction function of pulsar timing array searches for gravitational waves in modified gravity","authors":"Nina Cordes, Andrea Mitridate, Kai Schmitz, Tobias Schröder and Kim Wassner","doi":"10.1088/1361-6382/ad9881","DOIUrl":null,"url":null,"abstract":"Pulsar timing array (PTA) searches for gravitational waves (GWs) aim to detect a characteristic correlation pattern in the timing residuals of galactic millisecond pulsars. This pattern is described by the PTA overlap reduction function (ORF) , which is known as the Hellings–Downs (HD) curve in general relativity (GR). In theories of modified gravity, the HD curve often receives corrections. Assuming, e.g. a subluminal GW phase velocity, one finds a drastically enhanced ORF in the limit of small angular separations between pulsar a and pulsar b in the sky, . In particular, working in harmonic space and performing an approximate resummation of all multipole contributions, the auto correlation coefficient Γaa seems to diverge. In this paper, we confirm that this divergence is unphysical and provide an exact and analytical expression for Γaa in dependence of the pulsar distance La and the GW phase velocity . In the GR limit and assuming a large pulsar distance, our expression reduces to . In the case of subluminal phase velocity, we show that the regularization of the naive divergent result is a finite-distance effect, meaning that Γaa scales linearly with fLa, where f is the GW frequency. For superluminal phase velocity (subluminal group velocity), which is relevant in the case of massive gravity, we correct an earlier analytical result for Γab. Our results pave the way for fitting modified-gravity theories with nonstandard phase velocity to PTA data, which requires a proper understanding of the auto correlation coefficient Γaa.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"3 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/ad9881","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Pulsar timing array (PTA) searches for gravitational waves (GWs) aim to detect a characteristic correlation pattern in the timing residuals of galactic millisecond pulsars. This pattern is described by the PTA overlap reduction function (ORF) , which is known as the Hellings–Downs (HD) curve in general relativity (GR). In theories of modified gravity, the HD curve often receives corrections. Assuming, e.g. a subluminal GW phase velocity, one finds a drastically enhanced ORF in the limit of small angular separations between pulsar a and pulsar b in the sky, . In particular, working in harmonic space and performing an approximate resummation of all multipole contributions, the auto correlation coefficient Γaa seems to diverge. In this paper, we confirm that this divergence is unphysical and provide an exact and analytical expression for Γaa in dependence of the pulsar distance La and the GW phase velocity . In the GR limit and assuming a large pulsar distance, our expression reduces to . In the case of subluminal phase velocity, we show that the regularization of the naive divergent result is a finite-distance effect, meaning that Γaa scales linearly with fLa, where f is the GW frequency. For superluminal phase velocity (subluminal group velocity), which is relevant in the case of massive gravity, we correct an earlier analytical result for Γab. Our results pave the way for fitting modified-gravity theories with nonstandard phase velocity to PTA data, which requires a proper understanding of the auto correlation coefficient Γaa.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Classical and Quantum Gravity
Classical and Quantum Gravity 物理-天文与天体物理
CiteScore
7.00
自引率
8.60%
发文量
301
审稿时长
2-4 weeks
期刊介绍: Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.
期刊最新文献
White paper and roadmap for quantum gravity phenomenology in the multi-messenger era Multimessenger observations and the science enabled: continuous waves and their progenitors, equation of state of dense matter On Carrollian and Galilean contractions of BMS algebra in 3 and 4 dimensions Picometer sensitive prototype of the optical truss interferometer for LISA A non-local way around the no-global-symmetries conjecture in quantum gravity?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1