Geolocation Uncertainty Analysis of Moon-Based Earth Observations

Runbo Dong;Huadong Guo;Mengxiong Zhou;Hanlin Ye;Guang Liu
{"title":"Geolocation Uncertainty Analysis of Moon-Based Earth Observations","authors":"Runbo Dong;Huadong Guo;Mengxiong Zhou;Hanlin Ye;Guang Liu","doi":"10.1109/LGRS.2024.3500021","DOIUrl":null,"url":null,"abstract":"The geometric characteristics of Moon-based Earth observation platforms differ significantly from those of satellite platforms, with geolocation being a key factor that impacts data quality. The geolocation of a Moon-based sensor is influenced by three key factors: lunar ephemeris (lunar position and libration), Earth orientation parameters (EOPs), and the Earth reference model. Measurement errors from these three sources can significantly affect the geolocation accuracy of a Moon-based sensor. This study proposes a new unbiased estimation method to quantify the geolocation uncertainty introduced by these factors, based on the fusion of multiversion datasets. The method avoids making assumptions about the error distribution of ephemeris parameters while providing an effective approximation of the spatiotemporal patterns of geolocation uncertainty. We integrate three types of ephemeris data, three Earth reference models, and multiple EOPs datasets to assess the overall distribution of geolocation uncertainty and separately evaluate the geolocation uncertainty introduced by each individual factor using control variates method. The results indicate that the maximum total geolocation uncertainty caused by the three factors is about 46 m. Ephemeris errors are the dominant contributor, accounting for more than 98% of the total uncertainty. In addition, measurement errors in lunar libration also account for why longitudinal uncertainty is significantly greater than latitudinal uncertainty.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10755111/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The geometric characteristics of Moon-based Earth observation platforms differ significantly from those of satellite platforms, with geolocation being a key factor that impacts data quality. The geolocation of a Moon-based sensor is influenced by three key factors: lunar ephemeris (lunar position and libration), Earth orientation parameters (EOPs), and the Earth reference model. Measurement errors from these three sources can significantly affect the geolocation accuracy of a Moon-based sensor. This study proposes a new unbiased estimation method to quantify the geolocation uncertainty introduced by these factors, based on the fusion of multiversion datasets. The method avoids making assumptions about the error distribution of ephemeris parameters while providing an effective approximation of the spatiotemporal patterns of geolocation uncertainty. We integrate three types of ephemeris data, three Earth reference models, and multiple EOPs datasets to assess the overall distribution of geolocation uncertainty and separately evaluate the geolocation uncertainty introduced by each individual factor using control variates method. The results indicate that the maximum total geolocation uncertainty caused by the three factors is about 46 m. Ephemeris errors are the dominant contributor, accounting for more than 98% of the total uncertainty. In addition, measurement errors in lunar libration also account for why longitudinal uncertainty is significantly greater than latitudinal uncertainty.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
月球对地观测的地理定位不确定性分析
月基对地观测平台的几何特征与卫星平台存在显著差异,地理位置是影响数据质量的关键因素。月球传感器的地理定位受三个关键因素的影响:月球星历(月球位置和振动)、地球方向参数(EOPs)和地球参考模型。这三种来源的测量误差会严重影响月球传感器的地理定位精度。本研究提出了一种新的基于多版本数据集融合的无偏估计方法来量化这些因素带来的地理位置不确定性。该方法避免了对星历参数误差分布的假设,同时提供了对地理位置不确定性时空格局的有效逼近。结合3种星历数据、3种地球参考模型和多个EOPs数据集,利用控制变量法评估了地理定位不确定性的总体分布,并分别评估了各因素带来的地理定位不确定性。结果表明,这3个因素造成的最大总定位不确定性约为46 m。星历表误差是主要因素,占总不确定性的98%以上。此外,月球振动的测量误差也解释了为什么纵向不确定度明显大于纬度不确定度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Size-Aware Local Contrast Measure for Tiny Infrared Target Detection Lightweight SAR Ship Detection via Pearson Correlation and Nonlocal Distillation TS-BiT: Two-Stage Binary Transformer for ORSI Salient Object Detection Learning-Based Profiling of Buried Elliptical-Cylindrical Objects HCA-Net: An Instance Segmentation Network for High-Consequence Areas Identification From Remote Sensing Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1