Spatiotemporal Object Detection for Improved Aerial Vehicle Detection in Traffic Monitoring

Kristina Telegraph;Christos Kyrkou
{"title":"Spatiotemporal Object Detection for Improved Aerial Vehicle Detection in Traffic Monitoring","authors":"Kristina Telegraph;Christos Kyrkou","doi":"10.1109/TAI.2024.3454566","DOIUrl":null,"url":null,"abstract":"This work presents advancements in multiclass vehicle detection using unmanned aerial vehicle (UAV) cameras through the development of spatiotemporal object detection models. The study introduces a spatiotemporal vehicle detection dataset (STVD) containing \n<inline-formula><tex-math>$6600$</tex-math></inline-formula>\n annotated sequential frame images captured by UAVs, enabling comprehensive training and evaluation of algorithms for holistic spatiotemporal perception. A YOLO-based object detection algorithm is enhanced to incorporate temporal dynamics, resulting in improved performance over single frame models. The integration of attention mechanisms into spatiotemporal models is shown to further enhance performance. Experimental validation demonstrates significant progress, with the best spatiotemporal model exhibiting a 16.22% improvement over single frame models, while it is demonstrated that attention mechanisms hold the potential for additional performance gains.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"5 12","pages":"6159-6171"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10666729/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents advancements in multiclass vehicle detection using unmanned aerial vehicle (UAV) cameras through the development of spatiotemporal object detection models. The study introduces a spatiotemporal vehicle detection dataset (STVD) containing $6600$ annotated sequential frame images captured by UAVs, enabling comprehensive training and evaluation of algorithms for holistic spatiotemporal perception. A YOLO-based object detection algorithm is enhanced to incorporate temporal dynamics, resulting in improved performance over single frame models. The integration of attention mechanisms into spatiotemporal models is shown to further enhance performance. Experimental validation demonstrates significant progress, with the best spatiotemporal model exhibiting a 16.22% improvement over single frame models, while it is demonstrated that attention mechanisms hold the potential for additional performance gains.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
交通监控中改进飞行器检测的时空目标检测
这项工作通过开发时空目标检测模型,介绍了使用无人机(UAV)相机进行多类别车辆检测的进展。该研究引入了一个时空车辆检测数据集(STVD),其中包含由无人机捕获的6600张带注释的序列帧图像,能够对整体时空感知算法进行全面的训练和评估。一种基于yolo的目标检测算法被增强,以结合时间动态,从而提高了单帧模型的性能。将注意机制整合到时空模型中可以进一步提高表现。实验验证显示了显著的进步,与单帧模型相比,最佳时空模型表现出16.22%的改进,同时表明注意机制具有额外性能提升的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
期刊最新文献
Front Cover Table of Contents IEEE Transactions on Artificial Intelligence Publication Information Table of Contents Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1