Two-Stage Representation Refinement Based on Convex Combination for 3-D Human Poses Estimation

Luefeng Chen;Wei Cao;Biao Zheng;Min Wu;Witold Pedrycz;Kaoru Hirota
{"title":"Two-Stage Representation Refinement Based on Convex Combination for 3-D Human Poses Estimation","authors":"Luefeng Chen;Wei Cao;Biao Zheng;Min Wu;Witold Pedrycz;Kaoru Hirota","doi":"10.1109/TAI.2024.3432028","DOIUrl":null,"url":null,"abstract":"In the human pose estimation task, on the one hand, 3-D pose always has difficulty in dividing different 2-D poses if the view is limited; on the other hand, it is hard to reduce the lifting ambiguity because of the lack of depth information, it is an important and challenging problem. Therefore, two-stage representation refinement based on the convex combination for 3-D human pose estimation is proposed, in which the two-stage method includes a dense-spatial-temporal convolutional network and a local-to-refine network. The former is applied to determine the features between each video frame; the latter is used to get the different scales of pose details. It aims to address the difficulty of estimating 3-D human pose from 2-D image sequences. In such a way, it can better use the relations between every frame in the sequence of the pose video to produce more accurate results. Finally, we combine the above network with a block called convex combination to help refine the 3-D pose location. We test the proposed approach on both Human3.6m and MPII datasets. The result confirms that our method can achieve better performance than improved CNN supervision, a simple yet effective baseline, and coarse-to-fine volumetric prediction. Besides, a robustness test experiment is carried out for the proposed method while the input is interrupted. The result verifies that our method shows better robustness.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"5 12","pages":"6500-6508"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10606307/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the human pose estimation task, on the one hand, 3-D pose always has difficulty in dividing different 2-D poses if the view is limited; on the other hand, it is hard to reduce the lifting ambiguity because of the lack of depth information, it is an important and challenging problem. Therefore, two-stage representation refinement based on the convex combination for 3-D human pose estimation is proposed, in which the two-stage method includes a dense-spatial-temporal convolutional network and a local-to-refine network. The former is applied to determine the features between each video frame; the latter is used to get the different scales of pose details. It aims to address the difficulty of estimating 3-D human pose from 2-D image sequences. In such a way, it can better use the relations between every frame in the sequence of the pose video to produce more accurate results. Finally, we combine the above network with a block called convex combination to help refine the 3-D pose location. We test the proposed approach on both Human3.6m and MPII datasets. The result confirms that our method can achieve better performance than improved CNN supervision, a simple yet effective baseline, and coarse-to-fine volumetric prediction. Besides, a robustness test experiment is carried out for the proposed method while the input is interrupted. The result verifies that our method shows better robustness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
期刊最新文献
Front Cover Table of Contents IEEE Transactions on Artificial Intelligence Publication Information Table of Contents Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1