Deep Unintentional Modulation Feature Extraction Framework Based on Decomposition Reconstruction and Metric Learning

IF 4.4 3区 计算机科学 Q2 TELECOMMUNICATIONS IEEE Communications Letters Pub Date : 2024-10-25 DOI:10.1109/LCOMM.2024.3486280
Wei Zhang;Lutao Liu;Yilin Jiang;Yuxin Liu
{"title":"Deep Unintentional Modulation Feature Extraction Framework Based on Decomposition Reconstruction and Metric Learning","authors":"Wei Zhang;Lutao Liu;Yilin Jiang;Yuxin Liu","doi":"10.1109/LCOMM.2024.3486280","DOIUrl":null,"url":null,"abstract":"In this letter, the avoiding of the powerful interference of intentional modulation (IM) information on unintentional modulation (UM) feature is primarily studied. To address this challenging issue, a novel framework for deep UM feature extraction is proposed. The ideas of decomposition reconstruction and metric learning are introduced into deep learning. Meanwhile, an objective function is designed to automatically learn the deep UM feature that is insensitive to the IM information. The experimental results show the remarkable stability and separability of the deep UM feature across measured data with variable IM parameters.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"28 12","pages":"2854-2858"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10735159/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this letter, the avoiding of the powerful interference of intentional modulation (IM) information on unintentional modulation (UM) feature is primarily studied. To address this challenging issue, a novel framework for deep UM feature extraction is proposed. The ideas of decomposition reconstruction and metric learning are introduced into deep learning. Meanwhile, an objective function is designed to automatically learn the deep UM feature that is insensitive to the IM information. The experimental results show the remarkable stability and separability of the deep UM feature across measured data with variable IM parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分解重构和度量学习的深度无意调制特征提取框架
本文主要研究了有意调制(IM)信息对无意调制(UM)特征的强干扰的避免。为了解决这一具有挑战性的问题,提出了一种新的深度UM特征提取框架。将分解重构和度量学习的思想引入深度学习。同时,设计了一个目标函数来自动学习对IM信息不敏感的深度UM特征。实验结果表明,在不同IM参数的测量数据中,深度UM特征具有显著的稳定性和可分离性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Communications Letters
IEEE Communications Letters 工程技术-电信学
CiteScore
8.10
自引率
7.30%
发文量
590
审稿时长
2.8 months
期刊介绍: The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.
期刊最新文献
PEXIT Analysis and Design of Multilevel Coded Modulation With SPC-Aided SC-LDPC Codes Molecular Communication With Langmuir Adsorption Kinetics: Channel Characteristics and Temporal Memory Impact of Random Fiber Coupling Efficiency on Secrecy of FSO-Fiber Communication Systems A Near-Field Beam-Tracking Technique for Extremely Large Uniform Planar Array Systems With Overlapped Subarray Configuration Optimal 3-D Deployment Range of RIS in mmWave Communications With Random Blockages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1