Seismic Data Sparse Representation Using Swin Transformers

Qiao Cheng;Xiangbo Gong;Bin Hu;Hongyu Zhu;Zhiyu Cao
{"title":"Seismic Data Sparse Representation Using Swin Transformers","authors":"Qiao Cheng;Xiangbo Gong;Bin Hu;Hongyu Zhu;Zhiyu Cao","doi":"10.1109/LGRS.2024.3510685","DOIUrl":null,"url":null,"abstract":"Seismic data preprocessing significantly benefits from advanced sparse representation and domain transformation techniques to enhance denoising, wavefield separation, and data reconstruction. This study introduces a novel approach utilizing a deep learning framework for discrete sparse representation of seismic data. Our method utilizes a Swin Transformer-based encoding-decoding framework, which combines the hierarchical structures of CNNs with the self-attention mechanism of Transformers, to model both local and global information efficiently. This integration enables the precise characterization of seismic reflection events and the reconstruction of seismic records from a constructed sparse feature space. The proposed model has been rigorously tested on both simulated and field datasets, demonstrating its robustness, and potential provides superior decomposition of seismic data.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10777475/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Seismic data preprocessing significantly benefits from advanced sparse representation and domain transformation techniques to enhance denoising, wavefield separation, and data reconstruction. This study introduces a novel approach utilizing a deep learning framework for discrete sparse representation of seismic data. Our method utilizes a Swin Transformer-based encoding-decoding framework, which combines the hierarchical structures of CNNs with the self-attention mechanism of Transformers, to model both local and global information efficiently. This integration enables the precise characterization of seismic reflection events and the reconstruction of seismic records from a constructed sparse feature space. The proposed model has been rigorously tested on both simulated and field datasets, demonstrating its robustness, and potential provides superior decomposition of seismic data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Swin变压器的地震数据稀疏表示
地震数据预处理主要得益于先进的稀疏表示和域变换技术来增强去噪、波场分离和数据重建。本研究介绍了一种利用深度学习框架对地震数据进行离散稀疏表示的新方法。我们的方法利用基于Swin变压器的编解码框架,将cnn的层次结构与变压器的自关注机制相结合,有效地对局部和全局信息进行建模。这种集成使得地震反射事件的精确表征和从构建的稀疏特征空间重建地震记录成为可能。该模型已经在模拟数据集和现场数据集上进行了严格的测试,证明了其鲁棒性,并有可能提供更好的地震数据分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Incorporating Stratal Dip to Constrain the Integration Range of Marchenko Imaging Weakly Supervised Semantic Segmentation of Remote Sensing Scenes With Cross-Image Class Token Constraints fKAN-UNet: Lightweight Road Segmentation With Fractional Spectral Modeling and Directional Convolutions MDAFNet: Multiscale Differential Edge and Adaptive Frequency Guided Network for Infrared Small Target Detection MSA-GAN: Multistructure Adaptive Generative Adversarial Network for Semi-Supervised Remote Sensing Road Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1