Global and Local Attention-Based Transformer for Hyperspectral Image Change Detection

Ziyi Wang;Feng Gao;Junyu Dong;Qian Du
{"title":"Global and Local Attention-Based Transformer for Hyperspectral Image Change Detection","authors":"Ziyi Wang;Feng Gao;Junyu Dong;Qian Du","doi":"10.1109/LGRS.2024.3505294","DOIUrl":null,"url":null,"abstract":"Recently, transformer-based hyperspectral image (HSI) change detection methods have shown remarkable performance. Nevertheless, existing attention mechanisms in transformers have limitations in local feature representation. To address this issue, we propose global and local attention-based transformer (GLAFormer), which incorporates a global and local attention module (GLAM) to combine high-frequency and low-frequency signals. Furthermore, we introduce a cross-gating mechanism, called cross-gated feedforward network (CGFN), to emphasize salient features and suppress noise interference. Specifically, the GLAM splits attention heads into global and local attention components to capture comprehensive spatial–spectral features. The global attention component uses global attention on downsampled feature maps to capture low-frequency information, while the local attention component focuses on high-frequency details using nonoverlapping window-based local attention. The CGFN enhances the feature representation via convolutions and cross-gating mechanism in parallel paths. The proposed GLAFormer is evaluated on three HSI datasets. The results demonstrate its superiority over state-of-the-art HSI change detection methods. The source code of GLAFormer is available at \n<uri>https://github.com/summitgao/GLAFormer</uri>\n.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10766648/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, transformer-based hyperspectral image (HSI) change detection methods have shown remarkable performance. Nevertheless, existing attention mechanisms in transformers have limitations in local feature representation. To address this issue, we propose global and local attention-based transformer (GLAFormer), which incorporates a global and local attention module (GLAM) to combine high-frequency and low-frequency signals. Furthermore, we introduce a cross-gating mechanism, called cross-gated feedforward network (CGFN), to emphasize salient features and suppress noise interference. Specifically, the GLAM splits attention heads into global and local attention components to capture comprehensive spatial–spectral features. The global attention component uses global attention on downsampled feature maps to capture low-frequency information, while the local attention component focuses on high-frequency details using nonoverlapping window-based local attention. The CGFN enhances the feature representation via convolutions and cross-gating mechanism in parallel paths. The proposed GLAFormer is evaluated on three HSI datasets. The results demonstrate its superiority over state-of-the-art HSI change detection methods. The source code of GLAFormer is available at https://github.com/summitgao/GLAFormer .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于全局和局部注意力的高光谱图像变化检测变压器
近年来,基于变压器的高光谱图像(HSI)变化检测方法表现出了显著的性能。然而,现有的变压器注意机制在局部特征表示方面存在局限性。为了解决这个问题,我们提出了基于全局和局部注意的变压器(GLAFormer),它包含一个全局和局部注意模块(GLAM)来组合高频和低频信号。此外,我们引入了一种交叉门控机制,称为交叉门控前馈网络(CGFN),以强调显著特征并抑制噪声干扰。具体来说,GLAM将注意力头分为全局和局部注意力分量,以捕获综合的空间光谱特征。全局注意分量利用下采样特征映射上的全局注意捕获低频信息,而局部注意分量利用基于非重叠窗口的局部注意捕获高频细节。CGFN通过卷积和交叉门机制在并行路径中增强特征表示。提出的GLAFormer在三个HSI数据集上进行了评估。结果表明其优于最先进的恒指变化检测方法。GLAFormer的源代码可从https://github.com/summitgao/GLAFormer获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IEEE Geoscience and Remote Sensing Letters Institutional Listings IEEE Geoscience and Remote Sensing Letters information for authors Corrections to “Spire Near-Nadir GNSS-R for Sea Ice Detection: First Results” FFO-DETR: Using Feature Filter to Improve the Performance of Oriented Detection Transformer Acoustic-to-Seismic Signal Attenuation and Aircraft Trajectory Tracking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1