{"title":"Towards Efficient and Real-Time Piano Transcription Using Neural Autoregressive Models","authors":"Taegyun Kwon;Dasaem Jeong;Juhan Nam","doi":"10.1109/TASLP.2024.3507568","DOIUrl":null,"url":null,"abstract":"In recent years, advancements in neural network designs and the availability of large-scale labeled datasets have led to significant improvements in the accuracy of piano transcription models. However, most previous work focused on high-performance offline transcription, neglecting deliberate consideration of model size. The goal of this work is to implement real-time piano transcription with a focus on achieving both high performance and a lightweight model. To this end, we propose novel architectures for convolutional recurrent neural networks, redesigning an existing autoregressive piano transcription model. First, we extend the acoustic module by adding a frequency-conditioned FiLM layer to the CNN module to adapt the convolutional filters on the frequency axis. Second, we improve note-state sequence modeling by using a pitchwise LSTM that focuses on note-state transitions within a note. In addition, we augment the autoregressive connection with an enhanced recursive context. Using these components, we propose two types of models; one for high performance and the other for high compactness. Through extensive experiments, we demonstrate that the proposed components are necessary for achieving high performance in an autoregressive model. Additionally, we provide experiments on real-time latency.","PeriodicalId":13332,"journal":{"name":"IEEE/ACM Transactions on Audio, Speech, and Language Processing","volume":"32 ","pages":"5106-5116"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Audio, Speech, and Language Processing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10769033/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, advancements in neural network designs and the availability of large-scale labeled datasets have led to significant improvements in the accuracy of piano transcription models. However, most previous work focused on high-performance offline transcription, neglecting deliberate consideration of model size. The goal of this work is to implement real-time piano transcription with a focus on achieving both high performance and a lightweight model. To this end, we propose novel architectures for convolutional recurrent neural networks, redesigning an existing autoregressive piano transcription model. First, we extend the acoustic module by adding a frequency-conditioned FiLM layer to the CNN module to adapt the convolutional filters on the frequency axis. Second, we improve note-state sequence modeling by using a pitchwise LSTM that focuses on note-state transitions within a note. In addition, we augment the autoregressive connection with an enhanced recursive context. Using these components, we propose two types of models; one for high performance and the other for high compactness. Through extensive experiments, we demonstrate that the proposed components are necessary for achieving high performance in an autoregressive model. Additionally, we provide experiments on real-time latency.
期刊介绍:
The IEEE/ACM Transactions on Audio, Speech, and Language Processing covers audio, speech and language processing and the sciences that support them. In audio processing: transducers, room acoustics, active sound control, human audition, analysis/synthesis/coding of music, and consumer audio. In speech processing: areas such as speech analysis, synthesis, coding, speech and speaker recognition, speech production and perception, and speech enhancement. In language processing: speech and text analysis, understanding, generation, dialog management, translation, summarization, question answering and document indexing and retrieval, as well as general language modeling.