Hydrothermal synthesis of novel CeO2/g-C3N4 nanocomposite: dual function of highly efficient supercapacitor electrode and Pt-free counter electrode for dye synthesized solar cell applications

IF 2.4 4区 化学 Q3 CHEMISTRY, PHYSICAL Ionics Pub Date : 2024-10-17 DOI:10.1007/s11581-024-05874-x
A. Sathik Basha, S. Ramachandran, S. Vadivel, Razan A. Alshgari
{"title":"Hydrothermal synthesis of novel CeO2/g-C3N4 nanocomposite: dual function of highly efficient supercapacitor electrode and Pt-free counter electrode for dye synthesized solar cell applications","authors":"A. Sathik Basha,&nbsp;S. Ramachandran,&nbsp;S. Vadivel,&nbsp;Razan A. Alshgari","doi":"10.1007/s11581-024-05874-x","DOIUrl":null,"url":null,"abstract":"<div><p>Here, we show how to make highly nitrogen-containing graphite carbon (g-C<sub>3</sub>N<sub>4</sub>)-coated rare earth metal oxide of CeO<sub>2</sub> nanotubes (CeO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>), which is usable as a dual function of supercapacitor electrode and counter electrode for dye-sensitized solar cells (DSSCs). Transmission electron microscopy (TEM), field emission scanning electron spectroscopy (FESEM), and energy-dispersive X-ray spectroscopy (EDX) techniques have all been used to examine the surface morphology and chemical data of the catalyst. The CeO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>-composited electrode exhibits high-specific capacitance of 614 Fg<sup>−1</sup> at 2 Ag<sup>−1</sup>. Based on the Trassati method, the CeO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> electrode exhibits 92% capacitive behavior at 100 mVs<sup>−1</sup>. The CeO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> electrode exhibits 91.6% cyclic stability after 10,000 cycles. The DSSCs made with CeO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> exhibited outstanding catalytic activity and a PCE of 8.13% compared to 8.02% for a standard electrode made of Pt. Due to the composite material’s outstanding catalytic performance and good electrical conductivity, this has occurred. However, the electrical conductivity of the titanium mesh is high. And compared to an FTO substrate, it can enhance the region of contact between the electrode material and the substrate. It can enhance <i>I</i><sup>−</sup>/<i>I</i><sup>−3</sup>’s capacity to speed up electron transmission by diffusion.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"30 12","pages":"8295 - 8311"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-024-05874-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Here, we show how to make highly nitrogen-containing graphite carbon (g-C3N4)-coated rare earth metal oxide of CeO2 nanotubes (CeO2/g-C3N4), which is usable as a dual function of supercapacitor electrode and counter electrode for dye-sensitized solar cells (DSSCs). Transmission electron microscopy (TEM), field emission scanning electron spectroscopy (FESEM), and energy-dispersive X-ray spectroscopy (EDX) techniques have all been used to examine the surface morphology and chemical data of the catalyst. The CeO2/g-C3N4-composited electrode exhibits high-specific capacitance of 614 Fg−1 at 2 Ag−1. Based on the Trassati method, the CeO2/g-C3N4 electrode exhibits 92% capacitive behavior at 100 mVs−1. The CeO2/g-C3N4 electrode exhibits 91.6% cyclic stability after 10,000 cycles. The DSSCs made with CeO2/g-C3N4 exhibited outstanding catalytic activity and a PCE of 8.13% compared to 8.02% for a standard electrode made of Pt. Due to the composite material’s outstanding catalytic performance and good electrical conductivity, this has occurred. However, the electrical conductivity of the titanium mesh is high. And compared to an FTO substrate, it can enhance the region of contact between the electrode material and the substrate. It can enhance I/I−3’s capacity to speed up electron transmission by diffusion.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
期刊最新文献
The influence of iron site doping lithium iron phosphate on the low temperature properties and the diffusion mechanism of lithium ion Enhancing safety and performance of hybrid supercapacitors through material system optimization High rate capability performance of cobalt-free lithium-rich Li1.2Ni0.18Mn0.57Al0.05O2 cathode material synthesized via co-precipitation method Aluminum-doped high-entropy oxide pyrochlore for enhanced lithium storage Hydrothermal synthesis of MoS2 nanoparticle as an electroactive material for supercapacitor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1