Influence of symmetry energy on electromagnetic field during heavy-ion collisions

IF 1.9 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Pramana Pub Date : 2024-12-13 DOI:10.1007/s12043-024-02860-w
Dhanpat Sharma, Suneel Kumar
{"title":"Influence of symmetry energy on electromagnetic field during heavy-ion collisions","authors":"Dhanpat Sharma,&nbsp;Suneel Kumar","doi":"10.1007/s12043-024-02860-w","DOIUrl":null,"url":null,"abstract":"<div><p>Heavy-ion collision simulations in intermediate energy regime using isospin quantum molecular dynamics model have been proposed as a novel means to glean information about the high density behaviour of nuclear matter. Herein, the influence of modelling the pressure gradient by changing stiffness parameter and isospin asymmetry on the dynamics of charged particles have been investigated. In this research, three different values of stiffness parameter, <span>\\(\\gamma =\\)</span> 0.66 (soft), 1 (stiff) and 2 (super-stiff), to tune the anisotropic transverse pressure gradients have been considered to explore the influence of density-dependent symmetry energy </p><div><div><span>$$\\begin{aligned} &amp; E_{\\textrm{sym}}({\\rho })=E_{\\textrm{sym}}({\\rho _{0}}) \\bigg (\\frac{\\rho }{\\rho _{0}}\\bigg )^{\\gamma } \\end{aligned}$$</span></div></div><p>on the electromagnetic field and energy density evolution. Stiffer symmetry energy (<span>\\( \\gamma =\\)</span> 2) leads to larger pressure gradient than softer symmetry energy (<span>\\( \\gamma =\\)</span> 0.66) that drives stronger expansion resulting in higher intensity of <span>\\((eB_{y}(0, 0, 0))_{\\textrm{max}}\\)</span> and <span>\\(\\langle | \\vec {E}\\cdot \\vec {B}|\\rangle _{\\textrm{max}}\\)</span>. The correlation of eccentricity, nuclear stopping, centrality with the electromagnetic field and energy density have been established for different stiffness parameters. To deepen this study, the influence of isospin asymmetry (<i>N</i>/<i>Z</i>) on the time evolution of electromagnetic field has also been explored.</p></div>","PeriodicalId":743,"journal":{"name":"Pramana","volume":"99 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pramana","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s12043-024-02860-w","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Heavy-ion collision simulations in intermediate energy regime using isospin quantum molecular dynamics model have been proposed as a novel means to glean information about the high density behaviour of nuclear matter. Herein, the influence of modelling the pressure gradient by changing stiffness parameter and isospin asymmetry on the dynamics of charged particles have been investigated. In this research, three different values of stiffness parameter, \(\gamma =\) 0.66 (soft), 1 (stiff) and 2 (super-stiff), to tune the anisotropic transverse pressure gradients have been considered to explore the influence of density-dependent symmetry energy

$$\begin{aligned} & E_{\textrm{sym}}({\rho })=E_{\textrm{sym}}({\rho _{0}}) \bigg (\frac{\rho }{\rho _{0}}\bigg )^{\gamma } \end{aligned}$$

on the electromagnetic field and energy density evolution. Stiffer symmetry energy (\( \gamma =\) 2) leads to larger pressure gradient than softer symmetry energy (\( \gamma =\) 0.66) that drives stronger expansion resulting in higher intensity of \((eB_{y}(0, 0, 0))_{\textrm{max}}\) and \(\langle | \vec {E}\cdot \vec {B}|\rangle _{\textrm{max}}\). The correlation of eccentricity, nuclear stopping, centrality with the electromagnetic field and energy density have been established for different stiffness parameters. To deepen this study, the influence of isospin asymmetry (N/Z) on the time evolution of electromagnetic field has also been explored.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重离子碰撞中对称能对电磁场的影响
利用同位旋量子分子动力学模型模拟中能态重离子碰撞是一种收集核物质高密度行为信息的新方法。本文研究了通过改变刚度参数和同位旋不对称性来模拟压力梯度对带电粒子动力学的影响。本研究采用\(\gamma =\) 0.66(软)、1(硬)和2(超硬)三种不同的刚度参数值来调节各向异性横向压力梯度,探讨密度相关对称能$$\begin{aligned} & E_{\textrm{sym}}({\rho })=E_{\textrm{sym}}({\rho _{0}}) \bigg (\frac{\rho }{\rho _{0}}\bigg )^{\gamma } \end{aligned}$$对电磁场和能量密度演化的影响。较硬的对称能(\( \gamma =\) 2)比较软的对称能(\( \gamma =\) 0.66)导致更大的压力梯度,导致更强的膨胀,从而导致\((eB_{y}(0, 0, 0))_{\textrm{max}}\)和\(\langle | \vec {E}\cdot \vec {B}|\rangle _{\textrm{max}}\)的强度更高。在不同刚度参数下,建立了偏心、核停止、中心性与电磁场和能量密度的关系。为了进一步深入研究,本文还探讨了同位旋不对称性(N/Z)对电磁场时间演化的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pramana
Pramana 物理-物理:综合
CiteScore
3.60
自引率
7.10%
发文量
206
审稿时长
3 months
期刊介绍: Pramana - Journal of Physics is a monthly research journal in English published by the Indian Academy of Sciences in collaboration with Indian National Science Academy and Indian Physics Association. The journal publishes refereed papers covering current research in Physics, both original contributions - research papers, brief reports or rapid communications - and invited reviews. Pramana also publishes special issues devoted to advances in specific areas of Physics and proceedings of select high quality conferences.
期刊最新文献
Gravity-driven thermally stratified nanofluid flow past a permeable stretching surface Charged relativistic model utilising embedding condition and quadratic equation of state Heat and mass transfer analysis for thin film lubricated flow of microbe-infused viscoelastic nanofluid Lump wave, breather wave and other abundant wave solutions to the (2 + 1)-dimensional Sawada–Kotera–Kadomtsev Petviashvili equation of fluid mechanics Enhanced UV and IR filtering with PMMA\(/\)perylene-coated FTO glass for energy-efficient luminescent solar concentrator windows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1