Fabrication of polypyrrole-coated silicon nanoparticle composite electrode for lithium-ion battery

IF 2.4 4区 化学 Q3 CHEMISTRY, PHYSICAL Ionics Pub Date : 2024-10-19 DOI:10.1007/s11581-024-05867-w
Shaohuai Zhang, Shujun Chen, Yifan Wang, Tianxin Zhang, Hongwei Yue, Tingting Li, Wei Li, Hao Li, Yongxing Hao, Yuanhao Gao
{"title":"Fabrication of polypyrrole-coated silicon nanoparticle composite electrode for lithium-ion battery","authors":"Shaohuai Zhang,&nbsp;Shujun Chen,&nbsp;Yifan Wang,&nbsp;Tianxin Zhang,&nbsp;Hongwei Yue,&nbsp;Tingting Li,&nbsp;Wei Li,&nbsp;Hao Li,&nbsp;Yongxing Hao,&nbsp;Yuanhao Gao","doi":"10.1007/s11581-024-05867-w","DOIUrl":null,"url":null,"abstract":"<div><p>Silicon has been the most ideal candidate anode material for high-capacity lithium-ion batteries owing to its higher theoretical capacity, relatively low potential, and rich resources. Unfortunately, the significant volume expansion (300%) and low intrinsic conductivity result in poor electrochemical performance during the charging-discharging process. Herein, one-dimensional linear polypyrrole-coated silicon nanoparticle (Si@PPy) composites are synthesized to elevate the lithium storage performance of silicon-based materials. The Si nanoparticles are coated by polypyrrole to form a one-dimensional linear structure, which not only enhances the electron/ion transfer rate, but also relieves the volume changes of Si. Simultaneously, the constructed interwoven network would be beneficial for the electrolyte immersion and provide more space for the expansion of the entire electrode. So the Si@PPy-2 composites demonstrated superior electrochemical performance with a discharge capacity of 1660.2 mAh g<sup>−1</sup> after 100 cycles at 100 mA g<sup>−1</sup> and the reversible specific capacity of 1047.0 mAh g<sup>−1</sup> at a high current density of 1000 mA g<sup>−1</sup> for 500 cycles. This simple in situ polymerization method to prepare high-performance Si anodes would be beneficial for the commercialization of silicon-based electrodes in LIBs.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"30 12","pages":"7869 - 7879"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-024-05867-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Silicon has been the most ideal candidate anode material for high-capacity lithium-ion batteries owing to its higher theoretical capacity, relatively low potential, and rich resources. Unfortunately, the significant volume expansion (300%) and low intrinsic conductivity result in poor electrochemical performance during the charging-discharging process. Herein, one-dimensional linear polypyrrole-coated silicon nanoparticle (Si@PPy) composites are synthesized to elevate the lithium storage performance of silicon-based materials. The Si nanoparticles are coated by polypyrrole to form a one-dimensional linear structure, which not only enhances the electron/ion transfer rate, but also relieves the volume changes of Si. Simultaneously, the constructed interwoven network would be beneficial for the electrolyte immersion and provide more space for the expansion of the entire electrode. So the Si@PPy-2 composites demonstrated superior electrochemical performance with a discharge capacity of 1660.2 mAh g−1 after 100 cycles at 100 mA g−1 and the reversible specific capacity of 1047.0 mAh g−1 at a high current density of 1000 mA g−1 for 500 cycles. This simple in situ polymerization method to prepare high-performance Si anodes would be beneficial for the commercialization of silicon-based electrodes in LIBs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
期刊最新文献
The influence of iron site doping lithium iron phosphate on the low temperature properties and the diffusion mechanism of lithium ion Enhancing safety and performance of hybrid supercapacitors through material system optimization High rate capability performance of cobalt-free lithium-rich Li1.2Ni0.18Mn0.57Al0.05O2 cathode material synthesized via co-precipitation method Aluminum-doped high-entropy oxide pyrochlore for enhanced lithium storage Hydrothermal synthesis of MoS2 nanoparticle as an electroactive material for supercapacitor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1