Mupirocin-Doped α-Cellulose Nanopaper for Wound Dressing: Development, In Vitro Characterization and Antimicrobial Studies

IF 3.4 4区 医学 Q2 PHARMACOLOGY & PHARMACY AAPS PharmSciTech Pub Date : 2024-12-13 DOI:10.1208/s12249-024-03013-3
Nivedita Pant, Sarika Wairkar
{"title":"Mupirocin-Doped α-Cellulose Nanopaper for Wound Dressing: Development, In Vitro Characterization and Antimicrobial Studies","authors":"Nivedita Pant,&nbsp;Sarika Wairkar","doi":"10.1208/s12249-024-03013-3","DOIUrl":null,"url":null,"abstract":"<div><p>This research aimed to develop a mupirocin-doped α-cellulose nanopaper (MDAC-NP) as a wound dressing to accelerate wound healing while limiting localized bacterial growth. The α-cellulose nanofibrils suspension was prepared by ultrasonication followed by microfluidization and subsequently doped with 0.05% w/v mupirocin to prepare nanopaper (MDAC-NP-A). The optimized batch of MDAC-NP had a porosity of 47.46 ± 0.60%, a thickness of 30 μm and a tensile strength of 0.113 MPa. The transmission electron microscopy images revealed long, slender, intertwined nanofibrillar structures and the scanning electron microscopy confirmed stable lamellar structures with tight nanofibrillar networks, giving them translucency. MDAC-NP-A had an excellent water vapor transmission rate of 2963 ± 10.26 g/m<sup>2</sup>/day, providing an optimal moist environment locally to promote wound healing. The mupirocin inclusion in the nanopapers was corroborated by the Fourier transform infrared spectroscopy and its crystallinity by X-ray diffraction, and differential scanning calorimetry results. The 100% drug release, was observed at 12 h from optimized MDAC-NP-A with a controlled release pattern. The MDAC-NP showed better antimicrobial activity, against <i>S. aureus</i> (41 mm) than <i>E. coli</i> (25 mm) and <i>P. aeruginosa</i> (17 mm) and was found to be better than marketed ointment. Thus, mupirocin-doped α-cellulose nanopapers emerge as a potential wound dressing for treating primary and secondary skin infections caused by external wounds.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1208/s12249-024-03013-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

This research aimed to develop a mupirocin-doped α-cellulose nanopaper (MDAC-NP) as a wound dressing to accelerate wound healing while limiting localized bacterial growth. The α-cellulose nanofibrils suspension was prepared by ultrasonication followed by microfluidization and subsequently doped with 0.05% w/v mupirocin to prepare nanopaper (MDAC-NP-A). The optimized batch of MDAC-NP had a porosity of 47.46 ± 0.60%, a thickness of 30 μm and a tensile strength of 0.113 MPa. The transmission electron microscopy images revealed long, slender, intertwined nanofibrillar structures and the scanning electron microscopy confirmed stable lamellar structures with tight nanofibrillar networks, giving them translucency. MDAC-NP-A had an excellent water vapor transmission rate of 2963 ± 10.26 g/m2/day, providing an optimal moist environment locally to promote wound healing. The mupirocin inclusion in the nanopapers was corroborated by the Fourier transform infrared spectroscopy and its crystallinity by X-ray diffraction, and differential scanning calorimetry results. The 100% drug release, was observed at 12 h from optimized MDAC-NP-A with a controlled release pattern. The MDAC-NP showed better antimicrobial activity, against S. aureus (41 mm) than E. coli (25 mm) and P. aeruginosa (17 mm) and was found to be better than marketed ointment. Thus, mupirocin-doped α-cellulose nanopapers emerge as a potential wound dressing for treating primary and secondary skin infections caused by external wounds.

Graphical Abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
AAPS PharmSciTech
AAPS PharmSciTech 医学-药学
CiteScore
6.80
自引率
3.00%
发文量
264
审稿时长
2.4 months
期刊介绍: AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.
期刊最新文献
Correction: From Bench to Bedside: ROS-Responsive Nanocarriers in Cancer Therapy Silica Nanoparticles: A Promising Vehicle for Anti-Cancer Drugs Delivery Understanding Microemulsions and Nanoemulsions in (Trans)Dermal Delivery Concerns Regarding the Use of Kirchhoff’s Laws in Pharmacokinetics Advancements in Transdermal Drug Delivery Systems: Harnessing the Potential of Macromolecular Assisted Permeation Enhancement and Novel Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1