{"title":"Construction of high energy density and long cycle life zinc-ion hybrid capacitors based on Wedelia chinensis-derived biomass porous carbon","authors":"Miaomiao Liu, Shenteng Wan, Letong Wang, Zengwei Pang, Tong Yao, Xiaohui Niu, Kunjie Wang, Hongxia Li","doi":"10.1007/s11581-024-05833-6","DOIUrl":null,"url":null,"abstract":"<div><p>Zinc ion hybrid capacitors (ZIHCs) have received much attention due to their low cost, safety, and green features. However, its development is seriously restricted by defects such as low energy density and insufficient cycle life. The selection of suitable capacitive materials can effectively enhance their electrochemical performance. Porous carbon materials become the choice of capacitive materials for ZIHCs due to their high ion adsorption capacity and fast kinetic behavior. In this paper, an oxygen-enriched biomass-derived nanoporous carbon was prepared by pyrolysis of <i>Wedelia chinensis</i> combining the chemical activation. The oxygen-rich functional groups on the surface of this nanoporous carbon can provide additional pseudocapacitance and improve the wettability of the material. The excellent electrochemical performance of the material in aqueous electrolyte was verified by assembling symmetrical capacitor (SCs) and ZIHC devices. Specifically, as high as 151 W h kg<sup>−1</sup> of energy density and 18 kW kg<sup>−1</sup> of power output as well as 25,000 cycles of long cycle life with 97.4% of capacity retention were demonstrated by as-assembled ZIHC.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"30 12","pages":"8329 - 8338"},"PeriodicalIF":2.4000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-024-05833-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Zinc ion hybrid capacitors (ZIHCs) have received much attention due to their low cost, safety, and green features. However, its development is seriously restricted by defects such as low energy density and insufficient cycle life. The selection of suitable capacitive materials can effectively enhance their electrochemical performance. Porous carbon materials become the choice of capacitive materials for ZIHCs due to their high ion adsorption capacity and fast kinetic behavior. In this paper, an oxygen-enriched biomass-derived nanoporous carbon was prepared by pyrolysis of Wedelia chinensis combining the chemical activation. The oxygen-rich functional groups on the surface of this nanoporous carbon can provide additional pseudocapacitance and improve the wettability of the material. The excellent electrochemical performance of the material in aqueous electrolyte was verified by assembling symmetrical capacitor (SCs) and ZIHC devices. Specifically, as high as 151 W h kg−1 of energy density and 18 kW kg−1 of power output as well as 25,000 cycles of long cycle life with 97.4% of capacity retention were demonstrated by as-assembled ZIHC.
期刊介绍:
Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.