{"title":"Layered Double Hydroxide (LDH)-Based Nanotripod for High-Entropydynamic Therapy Associated with Metabolism Homeostasis.","authors":"Kai Song, Xueting Yang, Yingying Ren, Zheng Mo, Yu Fei, Xiangling Gu, Shizhuo Xiao, Chenghua Sun, Shanyue Guan, Pengtao Bao, Xiaozhong Qu","doi":"10.1021/acsabm.4c01745","DOIUrl":null,"url":null,"abstract":"<p><p>Multielemental transition metal compounds represent a class of promising candidates for the biomedical field due to their unique structure and biomedical application potential. However, their synthesis process remains challenging, which was subject to the high-temperature treatment of the multimetallic elements integrated within one system. Herein, for the first time, we have fabricated the nanotripod, <i>i.e.</i>, (FeCoNiCuZnAl)O<sub><i>x</i></sub> (denoted as HEO) agent, via the structural topotactic transformation of layered double hydroxide (LDH) precursors with the tunable disorder degree, for highly efficient high-entropydynamic therapy associated with metabolism homeostasis. By virtue of this unique high-entropy structure, the outburst reactive oxygen species (ROS) generation can be regulated via turbulence. These unique high-entropy oxides not only presented outstanding ROS generation efficiency but also broke the intracellular metabolic balance cycle (NADH/NAD<sup>+</sup>) by NO<i><sub>x</sub></i>-like activity, which can disturb the tumor energy metabolism homeostasis, leading to cell apoptosis. Furthermore, <i>in vitro</i> and <i>in vivo</i> experiments both indicate that this agent was a satisfying candidate for magnetic resonance imaging (MRI)-guided therapy. The findings offer a strategy for the development of high-entropydynamic therapy.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Multielemental transition metal compounds represent a class of promising candidates for the biomedical field due to their unique structure and biomedical application potential. However, their synthesis process remains challenging, which was subject to the high-temperature treatment of the multimetallic elements integrated within one system. Herein, for the first time, we have fabricated the nanotripod, i.e., (FeCoNiCuZnAl)Ox (denoted as HEO) agent, via the structural topotactic transformation of layered double hydroxide (LDH) precursors with the tunable disorder degree, for highly efficient high-entropydynamic therapy associated with metabolism homeostasis. By virtue of this unique high-entropy structure, the outburst reactive oxygen species (ROS) generation can be regulated via turbulence. These unique high-entropy oxides not only presented outstanding ROS generation efficiency but also broke the intracellular metabolic balance cycle (NADH/NAD+) by NOx-like activity, which can disturb the tumor energy metabolism homeostasis, leading to cell apoptosis. Furthermore, in vitro and in vivo experiments both indicate that this agent was a satisfying candidate for magnetic resonance imaging (MRI)-guided therapy. The findings offer a strategy for the development of high-entropydynamic therapy.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.