{"title":"Prediction of mucinous adenocarcinoma in colorectal cancer with mucinous components detected in preoperative biopsy diagnosis.","authors":"Tong Ling, Zhichao Zuo, Mingwei Huang, Liucheng Wu, Jie Ma, Xiaoliang Huang, Weizhong Tang","doi":"10.1007/s00261-024-04743-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Endoscopic biopsy diagnosis for the preoperative assessment of mucinous components in patients with colorectal cancer is limited. This study investigated a radiomics model and established an explainable prediction model by using machine learning to differentiate between adenocarcinoma with mucinous components and mucinous adenocarcinoma.</p><p><strong>Methods: </strong>The derivation cohort included 312 patients with colorectal cancer with mucinous components detected during preoperative endoscopic biopsy diagnosis. These patients were randomly divided into training and validation sets in a 7:3 ratio. Radiomics features were extracted, followed by feature engineering, to create a radiomic score (radscore). Subsequently, 24 features, including the radscore, clinical data, and serological characteristics, were used to develop machine learning models by using nine different machine learning algorithms. The SHapley Additive exPlanation (SHAP) method was employed to elucidate the workings of the machine learning models and visualize individual variable predictions.</p><p><strong>Results: </strong>The radiomics model achieved an area under the curve (AUC) of 0.810. The random forest model outperformed the other models and had the highest AUC of 0.832; thus, this model was defined as the hybrid model. The clinical model, which was built using clinical data and serological characteristics, had an AUC of 0.732, whereas the radiomics model achieved an AUC of 0.810. SHAP model interpretation revealed that among the 14 features with non-zero SHAP values, the radscore and clinical T stage had notably higher values.</p><p><strong>Conclusion: </strong>This interpretable predictive model effectively differentiates between adenocarcinoma with mucinous components and mucinous adenocarcinoma in patients with colorectal cancer, thereby facilitating informed treatment decisions for individuals in whom mucinous components are identified during preoperative biopsy diagnosis.</p>","PeriodicalId":7126,"journal":{"name":"Abdominal Radiology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abdominal Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00261-024-04743-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Endoscopic biopsy diagnosis for the preoperative assessment of mucinous components in patients with colorectal cancer is limited. This study investigated a radiomics model and established an explainable prediction model by using machine learning to differentiate between adenocarcinoma with mucinous components and mucinous adenocarcinoma.
Methods: The derivation cohort included 312 patients with colorectal cancer with mucinous components detected during preoperative endoscopic biopsy diagnosis. These patients were randomly divided into training and validation sets in a 7:3 ratio. Radiomics features were extracted, followed by feature engineering, to create a radiomic score (radscore). Subsequently, 24 features, including the radscore, clinical data, and serological characteristics, were used to develop machine learning models by using nine different machine learning algorithms. The SHapley Additive exPlanation (SHAP) method was employed to elucidate the workings of the machine learning models and visualize individual variable predictions.
Results: The radiomics model achieved an area under the curve (AUC) of 0.810. The random forest model outperformed the other models and had the highest AUC of 0.832; thus, this model was defined as the hybrid model. The clinical model, which was built using clinical data and serological characteristics, had an AUC of 0.732, whereas the radiomics model achieved an AUC of 0.810. SHAP model interpretation revealed that among the 14 features with non-zero SHAP values, the radscore and clinical T stage had notably higher values.
Conclusion: This interpretable predictive model effectively differentiates between adenocarcinoma with mucinous components and mucinous adenocarcinoma in patients with colorectal cancer, thereby facilitating informed treatment decisions for individuals in whom mucinous components are identified during preoperative biopsy diagnosis.
期刊介绍:
Abdominal Radiology seeks to meet the professional needs of the abdominal radiologist by publishing clinically pertinent original, review and practice related articles on the gastrointestinal and genitourinary tracts and abdominal interventional and radiologic procedures. Case reports are generally not accepted unless they are the first report of a new disease or condition, or part of a special solicited section.
Reasons to Publish Your Article in Abdominal Radiology:
· Official journal of the Society of Abdominal Radiology (SAR)
· Published in Cooperation with:
European Society of Gastrointestinal and Abdominal Radiology (ESGAR)
European Society of Urogenital Radiology (ESUR)
Asian Society of Abdominal Radiology (ASAR)
· Efficient handling and Expeditious review
· Author feedback is provided in a mentoring style
· Global readership
· Readers can earn CME credits