{"title":"Novel-designed antimicrobial peptides with dual antimicrobial and anti-inflammatory actions against Cutibacterium acnes for acne vulgaris therapy.","authors":"Hyun Kim, Ju Hye Jang, Ha Rang Kim, Ju Hyun Cho","doi":"10.1016/j.bcp.2024.116708","DOIUrl":null,"url":null,"abstract":"<p><p>Acne vulgaris is a prevalent skin condition among adolescents, primarily instigated by over-colonization and subsequent inflammation triggered by Cutibacterium acnes. Although topical and oral antibiotics are standard treatments, they often lead to the proliferation of antibiotic-resistant bacteria and are associated with undesirable side effects. Antimicrobial peptides (AMPs) are considered a promising solution to these challenges. In this study, we aimed to develop novel short AMPs to combat C. acnes. By comparing sequences and abstracting the distribution of residue types of established AMPs, we derived a sequence template. Using this template, we crafted novel anti-C. acnes peptides comprising 13 amino acid residues. To enhance their potential therapeutic application, we designed a series of peptides by varying the number and position of the tryptophan residues. Among these peptides, DAP-7 and DAP-10 demonstrated potent antimicrobial activity against both antibiotic-susceptible and -resistant strains of C. acnes, with minimal cytotoxicity. The antimicrobial action of these peptides was attributed to their ability to target the bacterial membrane, resulting in permeabilization and rupture. Moreover, DAP-7 and DAP-10 effectively reduced the expression of pro-inflammatory cytokines induced by C. acnes and remained stable for up to 12 h after exposure to proteases found in acne lesions. Notably, DAP-7 decreased the C. acnes colonies on the ears and significantly alleviated C. acnes-induced ear swelling in a mouse model. Our findings suggest that the DAP-7 and DAP-10 peptides hold promise as candidates for developing a new acne vulgaris treatment.</p>","PeriodicalId":8806,"journal":{"name":"Biochemical pharmacology","volume":" ","pages":"116708"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.bcp.2024.116708","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Acne vulgaris is a prevalent skin condition among adolescents, primarily instigated by over-colonization and subsequent inflammation triggered by Cutibacterium acnes. Although topical and oral antibiotics are standard treatments, they often lead to the proliferation of antibiotic-resistant bacteria and are associated with undesirable side effects. Antimicrobial peptides (AMPs) are considered a promising solution to these challenges. In this study, we aimed to develop novel short AMPs to combat C. acnes. By comparing sequences and abstracting the distribution of residue types of established AMPs, we derived a sequence template. Using this template, we crafted novel anti-C. acnes peptides comprising 13 amino acid residues. To enhance their potential therapeutic application, we designed a series of peptides by varying the number and position of the tryptophan residues. Among these peptides, DAP-7 and DAP-10 demonstrated potent antimicrobial activity against both antibiotic-susceptible and -resistant strains of C. acnes, with minimal cytotoxicity. The antimicrobial action of these peptides was attributed to their ability to target the bacterial membrane, resulting in permeabilization and rupture. Moreover, DAP-7 and DAP-10 effectively reduced the expression of pro-inflammatory cytokines induced by C. acnes and remained stable for up to 12 h after exposure to proteases found in acne lesions. Notably, DAP-7 decreased the C. acnes colonies on the ears and significantly alleviated C. acnes-induced ear swelling in a mouse model. Our findings suggest that the DAP-7 and DAP-10 peptides hold promise as candidates for developing a new acne vulgaris treatment.
期刊介绍:
Biochemical Pharmacology publishes original research findings, Commentaries and review articles related to the elucidation of cellular and tissue function(s) at the biochemical and molecular levels, the modification of cellular phenotype(s) by genetic, transcriptional/translational or drug/compound-induced modifications, as well as the pharmacodynamics and pharmacokinetics of xenobiotics and drugs, the latter including both small molecules and biologics.
The journal''s target audience includes scientists engaged in the identification and study of the mechanisms of action of xenobiotics, biologics and drugs and in the drug discovery and development process.
All areas of cellular biology and cellular, tissue/organ and whole animal pharmacology fall within the scope of the journal. Drug classes covered include anti-infectives, anti-inflammatory agents, chemotherapeutics, cardiovascular, endocrinological, immunological, metabolic, neurological and psychiatric drugs, as well as research on drug metabolism and kinetics. While medicinal chemistry is a topic of complimentary interest, manuscripts in this area must contain sufficient biological data to characterize pharmacologically the compounds reported. Submissions describing work focused predominately on chemical synthesis and molecular modeling will not be considered for review.
While particular emphasis is placed on reporting the results of molecular and biochemical studies, research involving the use of tissue and animal models of human pathophysiology and toxicology is of interest to the extent that it helps define drug mechanisms of action, safety and efficacy.