Ståle Toften, Jonas T Kjellstadli, Jørn Kværness, Line Pedersen, Lars E Laugsand, Ole K F Thu
{"title":"Contactless and continuous monitoring of respiratory rate in a hospital ward: a clinical validation study.","authors":"Ståle Toften, Jonas T Kjellstadli, Jørn Kværness, Line Pedersen, Lars E Laugsand, Ole K F Thu","doi":"10.3389/fphys.2024.1502413","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Continuous monitoring of respiratory rate in hospital wards can provide early detection of clinical deterioration, thereby reducing mortality, reducing transfers to intensive care units, and reducing the hospital length of stay. Despite the advantages of continuous monitoring, manually counting every 1-12 h remains the standard of care in most hospital wards. The objective of this study was to validate continuous respiratory rate measurements from a radar-based contactless patient monitor [Vitalthings Guardian M10 (Vitalthings AS, Norway)] in a hospital ward.</p><p><strong>Methods: </strong>An observational study (clinicaltrials.gov: NCT06083272) was conducted at the emergency ward of a university hospital. Adult patients were monitored during rest with Vitalthings Guardian M10 in both a stationary and mobile configuration simultaneously with a reference device [Nox T3s (Nox Medical, Alpharetta, GA, United States)]. The agreement was assessed using Bland-Altman 95% limits of agreement. The sensitivity and specificity of clinical alarms were evaluated using a Clarke Error grid modified for continuous monitoring of respiratory rate. Clinical aspects were further evaluated in terms of trend analysis and examination of gaps between valid measurements.</p><p><strong>Results: </strong>32 patients were monitored for a median duration of 42 min [IQR (range) 35-46 (30-59 min)]. The bias was 0.1 and 0.0 breaths min<sup>-1</sup> and the 95% limits of agreement ranged from -1.1 to 1.2 and -1.1 to 1.1 breaths min<sup>-1</sup> for the stationary and mobile configuration, respectively. The concordances for trends were 96%. No clinical alarms were missed, and no false alarms or technical alarms were generated. No interval without a valid measurement was longer than 5 min.</p><p><strong>Conclusion: </strong>Vitalthings Guardian M10 measured respiratory rate accurately and continuously in resting patients in a hospital ward.</p>","PeriodicalId":12477,"journal":{"name":"Frontiers in Physiology","volume":"15 ","pages":"1502413"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631942/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fphys.2024.1502413","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Continuous monitoring of respiratory rate in hospital wards can provide early detection of clinical deterioration, thereby reducing mortality, reducing transfers to intensive care units, and reducing the hospital length of stay. Despite the advantages of continuous monitoring, manually counting every 1-12 h remains the standard of care in most hospital wards. The objective of this study was to validate continuous respiratory rate measurements from a radar-based contactless patient monitor [Vitalthings Guardian M10 (Vitalthings AS, Norway)] in a hospital ward.
Methods: An observational study (clinicaltrials.gov: NCT06083272) was conducted at the emergency ward of a university hospital. Adult patients were monitored during rest with Vitalthings Guardian M10 in both a stationary and mobile configuration simultaneously with a reference device [Nox T3s (Nox Medical, Alpharetta, GA, United States)]. The agreement was assessed using Bland-Altman 95% limits of agreement. The sensitivity and specificity of clinical alarms were evaluated using a Clarke Error grid modified for continuous monitoring of respiratory rate. Clinical aspects were further evaluated in terms of trend analysis and examination of gaps between valid measurements.
Results: 32 patients were monitored for a median duration of 42 min [IQR (range) 35-46 (30-59 min)]. The bias was 0.1 and 0.0 breaths min-1 and the 95% limits of agreement ranged from -1.1 to 1.2 and -1.1 to 1.1 breaths min-1 for the stationary and mobile configuration, respectively. The concordances for trends were 96%. No clinical alarms were missed, and no false alarms or technical alarms were generated. No interval without a valid measurement was longer than 5 min.
Conclusion: Vitalthings Guardian M10 measured respiratory rate accurately and continuously in resting patients in a hospital ward.
期刊介绍:
Frontiers in Physiology is a leading journal in its field, publishing rigorously peer-reviewed research on the physiology of living systems, from the subcellular and molecular domains to the intact organism, and its interaction with the environment. Field Chief Editor George E. Billman at the Ohio State University Columbus is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.